Metamath Proof Explorer


Theorem isfin1-3

Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of Levy58 p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin1-3 AVAFin[⊂]-1Fr𝒫A

Proof

Step Hyp Ref Expression
1 porpss [⊂]Po𝒫A
2 cnvpo [⊂]Po𝒫A[⊂]-1Po𝒫A
3 1 2 mpbi [⊂]-1Po𝒫A
4 pwfi AFin𝒫AFin
5 4 biimpi AFin𝒫AFin
6 frfi [⊂]-1Po𝒫A𝒫AFin[⊂]-1Fr𝒫A
7 3 5 6 sylancr AFin[⊂]-1Fr𝒫A
8 inss2 Fin𝒫A𝒫A
9 pwexg AV𝒫AV
10 ssexg Fin𝒫A𝒫A𝒫AVFin𝒫AV
11 8 9 10 sylancr AVFin𝒫AV
12 0fin Fin
13 0elpw 𝒫A
14 12 13 elini Fin𝒫A
15 14 ne0ii Fin𝒫A
16 fri Fin𝒫AV[⊂]-1Fr𝒫AFin𝒫A𝒫AFin𝒫AbFin𝒫AcFin𝒫A¬c[⊂]-1b
17 8 15 16 mpanr12 Fin𝒫AV[⊂]-1Fr𝒫AbFin𝒫AcFin𝒫A¬c[⊂]-1b
18 11 17 sylan AV[⊂]-1Fr𝒫AbFin𝒫AcFin𝒫A¬c[⊂]-1b
19 18 ex AV[⊂]-1Fr𝒫AbFin𝒫AcFin𝒫A¬c[⊂]-1b
20 elinel1 bFin𝒫AbFin
21 ralnex cFin𝒫A¬c[⊂]-1b¬cFin𝒫Ac[⊂]-1b
22 20 adantr bFin𝒫AdA¬dbbFin
23 snfi dFin
24 unfi bFindFinbdFin
25 22 23 24 sylancl bFin𝒫AdA¬dbbdFin
26 elinel2 bFin𝒫Ab𝒫A
27 26 elpwid bFin𝒫AbA
28 27 adantr bFin𝒫AdA¬dbbA
29 snssi dAdA
30 29 ad2antrl bFin𝒫AdA¬dbdA
31 28 30 unssd bFin𝒫AdA¬dbbdA
32 vex bV
33 vsnex dV
34 32 33 unex bdV
35 34 elpw bd𝒫AbdA
36 31 35 sylibr bFin𝒫AdA¬dbbd𝒫A
37 25 36 elind bFin𝒫AdA¬dbbdFin𝒫A
38 disjsn bd=¬db
39 38 biimpri ¬dbbd=
40 vex dV
41 40 snnz d
42 disjpss bd=dbbd
43 39 41 42 sylancl ¬dbbbd
44 43 ad2antll bFin𝒫AdA¬dbbbd
45 34 32 brcnv bd[⊂]-1bb[⊂]bd
46 34 brrpss b[⊂]bdbbd
47 45 46 bitri bd[⊂]-1bbbd
48 44 47 sylibr bFin𝒫AdA¬dbbd[⊂]-1b
49 breq1 c=bdc[⊂]-1bbd[⊂]-1b
50 49 rspcev bdFin𝒫Abd[⊂]-1bcFin𝒫Ac[⊂]-1b
51 37 48 50 syl2anc bFin𝒫AdA¬dbcFin𝒫Ac[⊂]-1b
52 51 expr bFin𝒫AdA¬dbcFin𝒫Ac[⊂]-1b
53 52 con1d bFin𝒫AdA¬cFin𝒫Ac[⊂]-1bdb
54 21 53 biimtrid bFin𝒫AdAcFin𝒫A¬c[⊂]-1bdb
55 54 impancom bFin𝒫AcFin𝒫A¬c[⊂]-1bdAdb
56 55 ssrdv bFin𝒫AcFin𝒫A¬c[⊂]-1bAb
57 ssfi bFinAbAFin
58 20 56 57 syl2an2r bFin𝒫AcFin𝒫A¬c[⊂]-1bAFin
59 58 rexlimiva bFin𝒫AcFin𝒫A¬c[⊂]-1bAFin
60 19 59 syl6 AV[⊂]-1Fr𝒫AAFin
61 7 60 impbid2 AVAFin[⊂]-1Fr𝒫A