Metamath Proof Explorer


Theorem isr0

Description: The property " J is an R_0 space". A space is R_0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains x also contains y , so there is no separation, then x and y are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R_0 if and only if its Kolmogorov quotient is T_1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion isr0 JTopOnXKQJFrezXwXoJzowooJzowo

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqid JTopOnXFJCnKQJ
3 2 ad2antrr JTopOnXKQJFrezXwXFJCnKQJ
4 cnima FJCnKQJvKQJF-1vJ
5 3 4 sylan JTopOnXKQJFrezXwXvKQJF-1vJ
6 eleq2 o=F-1vzozF-1v
7 eleq2 o=F-1vwowF-1v
8 6 7 imbi12d o=F-1vzowozF-1vwF-1v
9 8 rspcv F-1vJoJzowozF-1vwF-1v
10 5 9 syl JTopOnXKQJFrezXwXvKQJoJzowozF-1vwF-1v
11 1 kqffn JTopOnXFFnX
12 11 ad2antrr JTopOnXKQJFrezXwXFFnX
13 12 adantr JTopOnXKQJFrezXwXvKQJFFnX
14 fnfun FFnXFunF
15 13 14 syl JTopOnXKQJFrezXwXvKQJFunF
16 simprl JTopOnXKQJFrezXwXzX
17 16 adantr JTopOnXKQJFrezXwXvKQJzX
18 13 fndmd JTopOnXKQJFrezXwXvKQJdomF=X
19 17 18 eleqtrrd JTopOnXKQJFrezXwXvKQJzdomF
20 fvimacnv FunFzdomFFzvzF-1v
21 15 19 20 syl2anc JTopOnXKQJFrezXwXvKQJFzvzF-1v
22 simprr JTopOnXKQJFrezXwXwX
23 22 adantr JTopOnXKQJFrezXwXvKQJwX
24 23 18 eleqtrrd JTopOnXKQJFrezXwXvKQJwdomF
25 fvimacnv FunFwdomFFwvwF-1v
26 15 24 25 syl2anc JTopOnXKQJFrezXwXvKQJFwvwF-1v
27 21 26 imbi12d JTopOnXKQJFrezXwXvKQJFzvFwvzF-1vwF-1v
28 10 27 sylibrd JTopOnXKQJFrezXwXvKQJoJzowoFzvFwv
29 28 ralrimdva JTopOnXKQJFrezXwXoJzowovKQJFzvFwv
30 simplr JTopOnXKQJFrezXwXKQJFre
31 fnfvelrn FFnXzXFzranF
32 12 16 31 syl2anc JTopOnXKQJFrezXwXFzranF
33 1 kqtopon JTopOnXKQJTopOnranF
34 33 ad2antrr JTopOnXKQJFrezXwXKQJTopOnranF
35 toponuni KQJTopOnranFranF=KQJ
36 34 35 syl JTopOnXKQJFrezXwXranF=KQJ
37 32 36 eleqtrd JTopOnXKQJFrezXwXFzKQJ
38 fnfvelrn FFnXwXFwranF
39 12 22 38 syl2anc JTopOnXKQJFrezXwXFwranF
40 39 36 eleqtrd JTopOnXKQJFrezXwXFwKQJ
41 eqid KQJ=KQJ
42 41 t1sep2 KQJFreFzKQJFwKQJvKQJFzvFwvFz=Fw
43 30 37 40 42 syl3anc JTopOnXKQJFrezXwXvKQJFzvFwvFz=Fw
44 29 43 syld JTopOnXKQJFrezXwXoJzowoFz=Fw
45 1 kqfeq JTopOnXzXwXFz=FwyJzywy
46 eleq2 o=yzozy
47 eleq2 o=ywowy
48 46 47 bibi12d o=yzowozywy
49 48 cbvralvw oJzowoyJzywy
50 45 49 bitr4di JTopOnXzXwXFz=FwoJzowo
51 50 3expb JTopOnXzXwXFz=FwoJzowo
52 51 adantlr JTopOnXKQJFrezXwXFz=FwoJzowo
53 44 52 sylibd JTopOnXKQJFrezXwXoJzowooJzowo
54 53 ralrimivva JTopOnXKQJFrezXwXoJzowooJzowo
55 54 ex JTopOnXKQJFrezXwXoJzowooJzowo
56 1 kqopn JTopOnXoJFoKQJ
57 56 ad4ant14 JTopOnXzXwXoJFoKQJ
58 eleq2 v=FoFzvFzFo
59 eleq2 v=FoFwvFwFo
60 58 59 imbi12d v=FoFzvFwvFzFoFwFo
61 60 rspcv FoKQJvKQJFzvFwvFzFoFwFo
62 57 61 syl JTopOnXzXwXoJvKQJFzvFwvFzFoFwFo
63 1 kqfvima JTopOnXoJzXzoFzFo
64 63 3expa JTopOnXoJzXzoFzFo
65 64 an32s JTopOnXzXoJzoFzFo
66 65 adantlr JTopOnXzXwXoJzoFzFo
67 1 kqfvima JTopOnXoJwXwoFwFo
68 67 3expa JTopOnXoJwXwoFwFo
69 68 an32s JTopOnXwXoJwoFwFo
70 69 adantllr JTopOnXzXwXoJwoFwFo
71 66 70 imbi12d JTopOnXzXwXoJzowoFzFoFwFo
72 62 71 sylibrd JTopOnXzXwXoJvKQJFzvFwvzowo
73 72 ralrimdva JTopOnXzXwXvKQJFzvFwvoJzowo
74 1 kqfval JTopOnXzXFz=yJ|zy
75 74 adantr JTopOnXzXwXFz=yJ|zy
76 1 kqfval JTopOnXwXFw=yJ|wy
77 76 adantlr JTopOnXzXwXFw=yJ|wy
78 75 77 eqeq12d JTopOnXzXwXFz=FwyJ|zy=yJ|wy
79 rabbi yJzywyyJ|zy=yJ|wy
80 49 79 bitri oJzowoyJ|zy=yJ|wy
81 78 80 bitr4di JTopOnXzXwXFz=FwoJzowo
82 81 biimprd JTopOnXzXwXoJzowoFz=Fw
83 73 82 imim12d JTopOnXzXwXoJzowooJzowovKQJFzvFwvFz=Fw
84 83 ralimdva JTopOnXzXwXoJzowooJzowowXvKQJFzvFwvFz=Fw
85 84 ralimdva JTopOnXzXwXoJzowooJzowozXwXvKQJFzvFwvFz=Fw
86 eleq1 a=FzavFzv
87 86 imbi1d a=FzavbvFzvbv
88 87 ralbidv a=FzvKQJavbvvKQJFzvbv
89 eqeq1 a=Fza=bFz=b
90 88 89 imbi12d a=FzvKQJavbva=bvKQJFzvbvFz=b
91 90 ralbidv a=FzbranFvKQJavbva=bbranFvKQJFzvbvFz=b
92 91 ralrn FFnXaranFbranFvKQJavbva=bzXbranFvKQJFzvbvFz=b
93 eleq1 b=FwbvFwv
94 93 imbi2d b=FwFzvbvFzvFwv
95 94 ralbidv b=FwvKQJFzvbvvKQJFzvFwv
96 eqeq2 b=FwFz=bFz=Fw
97 95 96 imbi12d b=FwvKQJFzvbvFz=bvKQJFzvFwvFz=Fw
98 97 ralrn FFnXbranFvKQJFzvbvFz=bwXvKQJFzvFwvFz=Fw
99 98 ralbidv FFnXzXbranFvKQJFzvbvFz=bzXwXvKQJFzvFwvFz=Fw
100 92 99 bitrd FFnXaranFbranFvKQJavbva=bzXwXvKQJFzvFwvFz=Fw
101 11 100 syl JTopOnXaranFbranFvKQJavbva=bzXwXvKQJFzvFwvFz=Fw
102 85 101 sylibrd JTopOnXzXwXoJzowooJzowoaranFbranFvKQJavbva=b
103 ist1-2 KQJTopOnranFKQJFrearanFbranFvKQJavbva=b
104 33 103 syl JTopOnXKQJFrearanFbranFvKQJavbva=b
105 102 104 sylibrd JTopOnXzXwXoJzowooJzowoKQJFre
106 55 105 impbid JTopOnXKQJFrezXwXoJzowooJzowo