Description: The property of being a measure on an undefined base sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | isrnmeas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-meas | |
|
2 | vex | |
|
3 | ovex | |
|
4 | mapex | |
|
5 | 2 3 4 | mp2an | |
6 | simp1 | |
|
7 | 6 | ss2abi | |
8 | 5 7 | ssexi | |
9 | feq1 | |
|
10 | fveq1 | |
|
11 | 10 | eqeq1d | |
12 | fveq1 | |
|
13 | fveq1 | |
|
14 | 13 | esumeq2sdv | |
15 | 12 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | 16 | ralbidv | |
18 | 9 11 17 | 3anbi123d | |
19 | 1 8 18 | abfmpunirn | |
20 | 19 | simprbi | |
21 | fdm | |
|
22 | 21 | 3ad2ant1 | |
23 | 22 | adantl | |
24 | simpl | |
|
25 | 23 24 | eqeltrd | |
26 | simp1 | |
|
27 | feq2 | |
|
28 | 27 | biimpar | |
29 | 22 26 28 | syl2anc | |
30 | simp2 | |
|
31 | simp3 | |
|
32 | pweq | |
|
33 | 32 | raleqdv | |
34 | 33 | biimpar | |
35 | 22 31 34 | syl2anc | |
36 | 29 30 35 | 3jca | |
37 | 36 | adantl | |
38 | 25 37 | jca | |
39 | 38 | rexlimiva | |
40 | 20 39 | syl | |