Metamath Proof Explorer


Theorem isrnmeas

Description: The property of being a measure on an undefined base sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion isrnmeas MranmeasuresdomMransigAlgebraM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy

Proof

Step Hyp Ref Expression
1 df-meas measures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
2 vex sV
3 ovex 0+∞V
4 mapex sV0+∞Vm|m:s0+∞V
5 2 3 4 mp2an m|m:s0+∞V
6 simp1 m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym:s0+∞
7 6 ss2abi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym|m:s0+∞
8 5 7 ssexi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmyV
9 feq1 m=Mm:s0+∞M:s0+∞
10 fveq1 m=Mm=M
11 10 eqeq1d m=Mm=0M=0
12 fveq1 m=Mmx=Mx
13 fveq1 m=Mmy=My
14 13 esumeq2sdv m=M*yxmy=*yxMy
15 12 14 eqeq12d m=Mmx=*yxmyMx=*yxMy
16 15 imbi2d m=MxωDisjyxymx=*yxmyxωDisjyxyMx=*yxMy
17 16 ralbidv m=Mx𝒫sxωDisjyxymx=*yxmyx𝒫sxωDisjyxyMx=*yxMy
18 9 11 17 3anbi123d m=Mm:s0+∞m=0x𝒫sxωDisjyxymx=*yxmyM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMy
19 1 8 18 abfmpunirn MranmeasuresMVsransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMy
20 19 simprbi MranmeasuressransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMy
21 fdm M:s0+∞domM=s
22 21 3ad2ant1 M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMydomM=s
23 22 adantl sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMydomM=s
24 simpl sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMysransigAlgebra
25 23 24 eqeltrd sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMydomMransigAlgebra
26 simp1 M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyM:s0+∞
27 feq2 domM=sM:domM0+∞M:s0+∞
28 27 biimpar domM=sM:s0+∞M:domM0+∞
29 22 26 28 syl2anc M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyM:domM0+∞
30 simp2 M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyM=0
31 simp3 M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyx𝒫sxωDisjyxyMx=*yxMy
32 pweq domM=s𝒫domM=𝒫s
33 32 raleqdv domM=sx𝒫domMxωDisjyxyMx=*yxMyx𝒫sxωDisjyxyMx=*yxMy
34 33 biimpar domM=sx𝒫sxωDisjyxyMx=*yxMyx𝒫domMxωDisjyxyMx=*yxMy
35 22 31 34 syl2anc M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyx𝒫domMxωDisjyxyMx=*yxMy
36 29 30 35 3jca M:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
37 36 adantl sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMyM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
38 25 37 jca sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMydomMransigAlgebraM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
39 38 rexlimiva sransigAlgebraM:s0+∞M=0x𝒫sxωDisjyxyMx=*yxMydomMransigAlgebraM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
40 20 39 syl MranmeasuresdomMransigAlgebraM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy