Metamath Proof Explorer


Theorem itg1ge0

Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion itg1ge0 Fdom10𝑝fF01F

Proof

Step Hyp Ref Expression
1 i1frn Fdom1ranFFin
2 difss ranF0ranF
3 ssfi ranFFinranF0ranFranF0Fin
4 1 2 3 sylancl Fdom1ranF0Fin
5 4 adantr Fdom10𝑝fFranF0Fin
6 i1ff Fdom1F:
7 6 adantr Fdom10𝑝fFF:
8 7 frnd Fdom10𝑝fFranF
9 8 ssdifssd Fdom10𝑝fFranF0
10 9 sselda Fdom10𝑝fFxranF0x
11 i1fima2sn Fdom1xranF0volF-1x
12 11 adantlr Fdom10𝑝fFxranF0volF-1x
13 10 12 remulcld Fdom10𝑝fFxranF0xvolF-1x
14 eldifi xranF0xranF
15 0cn 0
16 fnconstg 0×0Fn
17 15 16 ax-mp ×0Fn
18 df-0p 0𝑝=×0
19 18 fneq1i 0𝑝Fn×0Fn
20 17 19 mpbir 0𝑝Fn
21 20 a1i Fdom10𝑝Fn
22 6 ffnd Fdom1FFn
23 cnex V
24 23 a1i Fdom1V
25 reex V
26 25 a1i Fdom1V
27 ax-resscn
28 sseqin2 =
29 27 28 mpbi =
30 0pval y0𝑝y=0
31 30 adantl Fdom1y0𝑝y=0
32 eqidd Fdom1yFy=Fy
33 21 22 24 26 29 31 32 ofrfval Fdom10𝑝fFy0Fy
34 33 biimpa Fdom10𝑝fFy0Fy
35 22 adantr Fdom10𝑝fFFFn
36 breq2 x=Fy0x0Fy
37 36 ralrn FFnxranF0xy0Fy
38 35 37 syl Fdom10𝑝fFxranF0xy0Fy
39 34 38 mpbird Fdom10𝑝fFxranF0x
40 39 r19.21bi Fdom10𝑝fFxranF0x
41 14 40 sylan2 Fdom10𝑝fFxranF00x
42 i1fima Fdom1F-1xdomvol
43 42 ad2antrr Fdom10𝑝fFxranF0F-1xdomvol
44 mblss F-1xdomvolF-1x
45 ovolge0 F-1x0vol*F-1x
46 44 45 syl F-1xdomvol0vol*F-1x
47 mblvol F-1xdomvolvolF-1x=vol*F-1x
48 46 47 breqtrrd F-1xdomvol0volF-1x
49 43 48 syl Fdom10𝑝fFxranF00volF-1x
50 10 12 41 49 mulge0d Fdom10𝑝fFxranF00xvolF-1x
51 5 13 50 fsumge0 Fdom10𝑝fF0xranF0xvolF-1x
52 itg1val Fdom11F=xranF0xvolF-1x
53 52 adantr Fdom10𝑝fF1F=xranF0xvolF-1x
54 51 53 breqtrrd Fdom10𝑝fF01F