Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itg1ge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1frn | |
|
2 | difss | |
|
3 | ssfi | |
|
4 | 1 2 3 | sylancl | |
5 | 4 | adantr | |
6 | i1ff | |
|
7 | 6 | adantr | |
8 | 7 | frnd | |
9 | 8 | ssdifssd | |
10 | 9 | sselda | |
11 | i1fima2sn | |
|
12 | 11 | adantlr | |
13 | 10 12 | remulcld | |
14 | eldifi | |
|
15 | 0cn | |
|
16 | fnconstg | |
|
17 | 15 16 | ax-mp | |
18 | df-0p | |
|
19 | 18 | fneq1i | |
20 | 17 19 | mpbir | |
21 | 20 | a1i | |
22 | 6 | ffnd | |
23 | cnex | |
|
24 | 23 | a1i | |
25 | reex | |
|
26 | 25 | a1i | |
27 | ax-resscn | |
|
28 | sseqin2 | |
|
29 | 27 28 | mpbi | |
30 | 0pval | |
|
31 | 30 | adantl | |
32 | eqidd | |
|
33 | 21 22 24 26 29 31 32 | ofrfval | |
34 | 33 | biimpa | |
35 | 22 | adantr | |
36 | breq2 | |
|
37 | 36 | ralrn | |
38 | 35 37 | syl | |
39 | 34 38 | mpbird | |
40 | 39 | r19.21bi | |
41 | 14 40 | sylan2 | |
42 | i1fima | |
|
43 | 42 | ad2antrr | |
44 | mblss | |
|
45 | ovolge0 | |
|
46 | 44 45 | syl | |
47 | mblvol | |
|
48 | 46 47 | breqtrrd | |
49 | 43 48 | syl | |
50 | 10 12 41 49 | mulge0d | |
51 | 5 13 50 | fsumge0 | |
52 | itg1val | |
|
53 | 52 | adantr | |
54 | 51 53 | breqtrrd | |