Metamath Proof Explorer


Theorem kgentopon

Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion kgentopon JTopOnX𝑘GenJTopOnX

Proof

Step Hyp Ref Expression
1 uniss x𝑘GenJx𝑘GenJ
2 kgenval JTopOnX𝑘GenJ=x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k
3 ssrab2 x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k𝒫X
4 2 3 eqsstrdi JTopOnX𝑘GenJ𝒫X
5 sspwuni 𝑘GenJ𝒫X𝑘GenJX
6 4 5 sylib JTopOnX𝑘GenJX
7 1 6 sylan9ssr JTopOnXx𝑘GenJxX
8 iunin2 yxky=kyxy
9 uniiun x=yxy
10 9 ineq2i kx=kyxy
11 incom kx=xk
12 8 10 11 3eqtr2i yxky=xk
13 cmptop J𝑡kCompJ𝑡kTop
14 13 ad2antll JTopOnXx𝑘GenJk𝒫XJ𝑡kCompJ𝑡kTop
15 incom yk=ky
16 simplr JTopOnXx𝑘GenJk𝒫XJ𝑡kCompx𝑘GenJ
17 16 sselda JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxy𝑘GenJ
18 simplrr JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxJ𝑡kComp
19 kgeni y𝑘GenJJ𝑡kCompykJ𝑡k
20 17 18 19 syl2anc JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxykJ𝑡k
21 15 20 eqeltrrid JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxkyJ𝑡k
22 21 ralrimiva JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxkyJ𝑡k
23 iunopn J𝑡kTopyxkyJ𝑡kyxkyJ𝑡k
24 14 22 23 syl2anc JTopOnXx𝑘GenJk𝒫XJ𝑡kCompyxkyJ𝑡k
25 12 24 eqeltrrid JTopOnXx𝑘GenJk𝒫XJ𝑡kCompxkJ𝑡k
26 25 expr JTopOnXx𝑘GenJk𝒫XJ𝑡kCompxkJ𝑡k
27 26 ralrimiva JTopOnXx𝑘GenJk𝒫XJ𝑡kCompxkJ𝑡k
28 elkgen JTopOnXx𝑘GenJxXk𝒫XJ𝑡kCompxkJ𝑡k
29 28 adantr JTopOnXx𝑘GenJx𝑘GenJxXk𝒫XJ𝑡kCompxkJ𝑡k
30 7 27 29 mpbir2and JTopOnXx𝑘GenJx𝑘GenJ
31 30 ex JTopOnXx𝑘GenJx𝑘GenJ
32 31 alrimiv JTopOnXxx𝑘GenJx𝑘GenJ
33 inss1 xyx
34 elssuni x𝑘GenJx𝑘GenJ
35 34 ad2antrl JTopOnXx𝑘GenJy𝑘GenJx𝑘GenJ
36 ssidd JTopOnXXX
37 elpwi k𝒫XkX
38 37 ad2antrl JTopOnXk𝒫XJ𝑡kCompkX
39 sseqin2 kXXk=k
40 38 39 sylib JTopOnXk𝒫XJ𝑡kCompXk=k
41 37 adantr k𝒫XJ𝑡kCompkX
42 resttopon JTopOnXkXJ𝑡kTopOnk
43 41 42 sylan2 JTopOnXk𝒫XJ𝑡kCompJ𝑡kTopOnk
44 toponmax J𝑡kTopOnkkJ𝑡k
45 43 44 syl JTopOnXk𝒫XJ𝑡kCompkJ𝑡k
46 40 45 eqeltrd JTopOnXk𝒫XJ𝑡kCompXkJ𝑡k
47 46 expr JTopOnXk𝒫XJ𝑡kCompXkJ𝑡k
48 47 ralrimiva JTopOnXk𝒫XJ𝑡kCompXkJ𝑡k
49 elkgen JTopOnXX𝑘GenJXXk𝒫XJ𝑡kCompXkJ𝑡k
50 36 48 49 mpbir2and JTopOnXX𝑘GenJ
51 elssuni X𝑘GenJX𝑘GenJ
52 50 51 syl JTopOnXX𝑘GenJ
53 52 6 eqssd JTopOnXX=𝑘GenJ
54 53 adantr JTopOnXx𝑘GenJy𝑘GenJX=𝑘GenJ
55 35 54 sseqtrrd JTopOnXx𝑘GenJy𝑘GenJxX
56 33 55 sstrid JTopOnXx𝑘GenJy𝑘GenJxyX
57 inindir xyk=xkyk
58 13 ad2antll JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompJ𝑡kTop
59 simplrl JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompx𝑘GenJ
60 simprr JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompJ𝑡kComp
61 kgeni x𝑘GenJJ𝑡kCompxkJ𝑡k
62 59 60 61 syl2anc JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompxkJ𝑡k
63 simplrr JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompy𝑘GenJ
64 63 60 19 syl2anc JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompykJ𝑡k
65 inopn J𝑡kTopxkJ𝑡kykJ𝑡kxkykJ𝑡k
66 58 62 64 65 syl3anc JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompxkykJ𝑡k
67 57 66 eqeltrid JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompxykJ𝑡k
68 67 expr JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompxykJ𝑡k
69 68 ralrimiva JTopOnXx𝑘GenJy𝑘GenJk𝒫XJ𝑡kCompxykJ𝑡k
70 elkgen JTopOnXxy𝑘GenJxyXk𝒫XJ𝑡kCompxykJ𝑡k
71 70 adantr JTopOnXx𝑘GenJy𝑘GenJxy𝑘GenJxyXk𝒫XJ𝑡kCompxykJ𝑡k
72 56 69 71 mpbir2and JTopOnXx𝑘GenJy𝑘GenJxy𝑘GenJ
73 72 ralrimivva JTopOnXx𝑘GenJy𝑘GenJxy𝑘GenJ
74 fvex 𝑘GenJV
75 istopg 𝑘GenJV𝑘GenJTopxx𝑘GenJx𝑘GenJx𝑘GenJy𝑘GenJxy𝑘GenJ
76 74 75 ax-mp 𝑘GenJTopxx𝑘GenJx𝑘GenJx𝑘GenJy𝑘GenJxy𝑘GenJ
77 32 73 76 sylanbrc JTopOnX𝑘GenJTop
78 istopon 𝑘GenJTopOnX𝑘GenJTopX=𝑘GenJ
79 77 53 78 sylanbrc JTopOnX𝑘GenJTopOnX