Metamath Proof Explorer


Theorem knoppndvlem10

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem10.t T = x x + 1 2 x
knoppndvlem10.f F = y n 0 C n T 2 N n y
knoppndvlem10.a A = 2 N J 2 M
knoppndvlem10.b B = 2 N J 2 M + 1
knoppndvlem10.c φ C 1 1
knoppndvlem10.j φ J 0
knoppndvlem10.m φ M
knoppndvlem10.n φ N
Assertion knoppndvlem10 φ F B J F A J = C J 2

Proof

Step Hyp Ref Expression
1 knoppndvlem10.t T = x x + 1 2 x
2 knoppndvlem10.f F = y n 0 C n T 2 N n y
3 knoppndvlem10.a A = 2 N J 2 M
4 knoppndvlem10.b B = 2 N J 2 M + 1
5 knoppndvlem10.c φ C 1 1
6 knoppndvlem10.j φ J 0
7 knoppndvlem10.m φ M
8 knoppndvlem10.n φ N
9 5 adantr φ 2 M C 1 1
10 6 adantr φ 2 M J 0
11 7 peano2zd φ M + 1
12 11 adantr φ 2 M M + 1
13 8 adantr φ 2 M N
14 notnot 2 M ¬ ¬ 2 M
15 14 adantl φ 2 M ¬ ¬ 2 M
16 7 adantr φ 2 M M
17 oddp1even M ¬ 2 M 2 M + 1
18 16 17 syl φ 2 M ¬ 2 M 2 M + 1
19 15 18 mtbid φ 2 M ¬ 2 M + 1
20 1 2 4 9 10 12 13 19 knoppndvlem9 φ 2 M F B J = C J 2
21 15 notnotrd φ 2 M 2 M
22 1 2 3 9 10 16 13 21 knoppndvlem8 φ 2 M F A J = 0
23 20 22 oveq12d φ 2 M F B J F A J = C J 2 0
24 5 knoppndvlem3 φ C C < 1
25 24 simpld φ C
26 25 recnd φ C
27 26 6 expcld φ C J
28 2cnd φ 2
29 2ne0 2 0
30 29 a1i φ 2 0
31 27 28 30 divcld φ C J 2
32 31 subid1d φ C J 2 0 = C J 2
33 32 adantr φ 2 M C J 2 0 = C J 2
34 23 33 eqtrd φ 2 M F B J F A J = C J 2
35 34 fveq2d φ 2 M F B J F A J = C J 2
36 4 a1i φ B = 2 N J 2 M + 1
37 6 nn0zd φ J
38 8 37 11 knoppndvlem1 φ 2 N J 2 M + 1
39 36 38 eqeltrd φ B
40 1 2 8 25 39 6 knoppcnlem3 φ F B J
41 40 recnd φ F B J
42 3 a1i φ A = 2 N J 2 M
43 8 37 7 knoppndvlem1 φ 2 N J 2 M
44 42 43 eqeltrd φ A
45 1 2 8 25 44 6 knoppcnlem3 φ F A J
46 45 recnd φ F A J
47 41 46 abssubd φ F B J F A J = F A J F B J
48 47 adantr φ ¬ 2 M F B J F A J = F A J F B J
49 5 adantr φ ¬ 2 M C 1 1
50 6 adantr φ ¬ 2 M J 0
51 7 adantr φ ¬ 2 M M
52 8 adantr φ ¬ 2 M N
53 simpr φ ¬ 2 M ¬ 2 M
54 1 2 3 49 50 51 52 53 knoppndvlem9 φ ¬ 2 M F A J = C J 2
55 11 adantr φ ¬ 2 M M + 1
56 51 17 syl φ ¬ 2 M ¬ 2 M 2 M + 1
57 53 56 mpbid φ ¬ 2 M 2 M + 1
58 1 2 4 49 50 55 52 57 knoppndvlem8 φ ¬ 2 M F B J = 0
59 54 58 oveq12d φ ¬ 2 M F A J F B J = C J 2 0
60 32 adantr φ ¬ 2 M C J 2 0 = C J 2
61 59 60 eqtrd φ ¬ 2 M F A J F B J = C J 2
62 61 fveq2d φ ¬ 2 M F A J F B J = C J 2
63 48 62 eqtrd φ ¬ 2 M F B J F A J = C J 2
64 35 63 pm2.61dan φ F B J F A J = C J 2
65 27 28 30 absdivd φ C J 2 = C J 2
66 26 6 absexpd φ C J = C J
67 0le2 0 2
68 2re 2
69 68 absidi 0 2 2 = 2
70 67 69 ax-mp 2 = 2
71 70 a1i φ 2 = 2
72 66 71 oveq12d φ C J 2 = C J 2
73 65 72 eqtrd φ C J 2 = C J 2
74 64 73 eqtrd φ F B J F A J = C J 2