Metamath Proof Explorer


Theorem knoppndvlem10

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem10.t T=xx+12x
knoppndvlem10.f F=yn0CnT2 Nny
knoppndvlem10.a A=2 NJ2 M
knoppndvlem10.b B=2 NJ2M+1
knoppndvlem10.c φC11
knoppndvlem10.j φJ0
knoppndvlem10.m φM
knoppndvlem10.n φN
Assertion knoppndvlem10 φFBJFAJ=CJ2

Proof

Step Hyp Ref Expression
1 knoppndvlem10.t T=xx+12x
2 knoppndvlem10.f F=yn0CnT2 Nny
3 knoppndvlem10.a A=2 NJ2 M
4 knoppndvlem10.b B=2 NJ2M+1
5 knoppndvlem10.c φC11
6 knoppndvlem10.j φJ0
7 knoppndvlem10.m φM
8 knoppndvlem10.n φN
9 5 adantr φ2MC11
10 6 adantr φ2MJ0
11 7 peano2zd φM+1
12 11 adantr φ2MM+1
13 8 adantr φ2MN
14 notnot 2M¬¬2M
15 14 adantl φ2M¬¬2M
16 7 adantr φ2MM
17 oddp1even M¬2M2M+1
18 16 17 syl φ2M¬2M2M+1
19 15 18 mtbid φ2M¬2M+1
20 1 2 4 9 10 12 13 19 knoppndvlem9 φ2MFBJ=CJ2
21 15 notnotrd φ2M2M
22 1 2 3 9 10 16 13 21 knoppndvlem8 φ2MFAJ=0
23 20 22 oveq12d φ2MFBJFAJ=CJ20
24 5 knoppndvlem3 φCC<1
25 24 simpld φC
26 25 recnd φC
27 26 6 expcld φCJ
28 2cnd φ2
29 2ne0 20
30 29 a1i φ20
31 27 28 30 divcld φCJ2
32 31 subid1d φCJ20=CJ2
33 32 adantr φ2MCJ20=CJ2
34 23 33 eqtrd φ2MFBJFAJ=CJ2
35 34 fveq2d φ2MFBJFAJ=CJ2
36 4 a1i φB=2 NJ2M+1
37 6 nn0zd φJ
38 8 37 11 knoppndvlem1 φ2 NJ2M+1
39 36 38 eqeltrd φB
40 1 2 8 25 39 6 knoppcnlem3 φFBJ
41 40 recnd φFBJ
42 3 a1i φA=2 NJ2 M
43 8 37 7 knoppndvlem1 φ2 NJ2 M
44 42 43 eqeltrd φA
45 1 2 8 25 44 6 knoppcnlem3 φFAJ
46 45 recnd φFAJ
47 41 46 abssubd φFBJFAJ=FAJFBJ
48 47 adantr φ¬2MFBJFAJ=FAJFBJ
49 5 adantr φ¬2MC11
50 6 adantr φ¬2MJ0
51 7 adantr φ¬2MM
52 8 adantr φ¬2MN
53 simpr φ¬2M¬2M
54 1 2 3 49 50 51 52 53 knoppndvlem9 φ¬2MFAJ=CJ2
55 11 adantr φ¬2MM+1
56 51 17 syl φ¬2M¬2M2M+1
57 53 56 mpbid φ¬2M2M+1
58 1 2 4 49 50 55 52 57 knoppndvlem8 φ¬2MFBJ=0
59 54 58 oveq12d φ¬2MFAJFBJ=CJ20
60 32 adantr φ¬2MCJ20=CJ2
61 59 60 eqtrd φ¬2MFAJFBJ=CJ2
62 61 fveq2d φ¬2MFAJFBJ=CJ2
63 48 62 eqtrd φ¬2MFBJFAJ=CJ2
64 35 63 pm2.61dan φFBJFAJ=CJ2
65 27 28 30 absdivd φCJ2=CJ2
66 26 6 absexpd φCJ=CJ
67 0le2 02
68 2re 2
69 68 absidi 022=2
70 67 69 ax-mp 2=2
71 70 a1i φ2=2
72 66 71 oveq12d φCJ2=CJ2
73 65 72 eqtrd φCJ2=CJ2
74 64 73 eqtrd φFBJFAJ=CJ2