Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem10.t |
|
2 |
|
knoppndvlem10.f |
|
3 |
|
knoppndvlem10.a |
|
4 |
|
knoppndvlem10.b |
|
5 |
|
knoppndvlem10.c |
|
6 |
|
knoppndvlem10.j |
|
7 |
|
knoppndvlem10.m |
|
8 |
|
knoppndvlem10.n |
|
9 |
5
|
adantr |
|
10 |
6
|
adantr |
|
11 |
7
|
peano2zd |
|
12 |
11
|
adantr |
|
13 |
8
|
adantr |
|
14 |
|
notnot |
|
15 |
14
|
adantl |
|
16 |
7
|
adantr |
|
17 |
|
oddp1even |
|
18 |
16 17
|
syl |
|
19 |
15 18
|
mtbid |
|
20 |
1 2 4 9 10 12 13 19
|
knoppndvlem9 |
|
21 |
15
|
notnotrd |
|
22 |
1 2 3 9 10 16 13 21
|
knoppndvlem8 |
|
23 |
20 22
|
oveq12d |
|
24 |
5
|
knoppndvlem3 |
|
25 |
24
|
simpld |
|
26 |
25
|
recnd |
|
27 |
26 6
|
expcld |
|
28 |
|
2cnd |
|
29 |
|
2ne0 |
|
30 |
29
|
a1i |
|
31 |
27 28 30
|
divcld |
|
32 |
31
|
subid1d |
|
33 |
32
|
adantr |
|
34 |
23 33
|
eqtrd |
|
35 |
34
|
fveq2d |
|
36 |
4
|
a1i |
|
37 |
6
|
nn0zd |
|
38 |
8 37 11
|
knoppndvlem1 |
|
39 |
36 38
|
eqeltrd |
|
40 |
1 2 8 25 39 6
|
knoppcnlem3 |
|
41 |
40
|
recnd |
|
42 |
3
|
a1i |
|
43 |
8 37 7
|
knoppndvlem1 |
|
44 |
42 43
|
eqeltrd |
|
45 |
1 2 8 25 44 6
|
knoppcnlem3 |
|
46 |
45
|
recnd |
|
47 |
41 46
|
abssubd |
|
48 |
47
|
adantr |
|
49 |
5
|
adantr |
|
50 |
6
|
adantr |
|
51 |
7
|
adantr |
|
52 |
8
|
adantr |
|
53 |
|
simpr |
|
54 |
1 2 3 49 50 51 52 53
|
knoppndvlem9 |
|
55 |
11
|
adantr |
|
56 |
51 17
|
syl |
|
57 |
53 56
|
mpbid |
|
58 |
1 2 4 49 50 55 52 57
|
knoppndvlem8 |
|
59 |
54 58
|
oveq12d |
|
60 |
32
|
adantr |
|
61 |
59 60
|
eqtrd |
|
62 |
61
|
fveq2d |
|
63 |
48 62
|
eqtrd |
|
64 |
35 63
|
pm2.61dan |
|
65 |
27 28 30
|
absdivd |
|
66 |
26 6
|
absexpd |
|
67 |
|
0le2 |
|
68 |
|
2re |
|
69 |
68
|
absidi |
|
70 |
67 69
|
ax-mp |
|
71 |
70
|
a1i |
|
72 |
66 71
|
oveq12d |
|
73 |
65 72
|
eqtrd |
|
74 |
64 73
|
eqtrd |
|