| Step | Hyp | Ref | Expression | 
						
							| 1 |  | knoppndvlem10.t |  | 
						
							| 2 |  | knoppndvlem10.f |  | 
						
							| 3 |  | knoppndvlem10.a |  | 
						
							| 4 |  | knoppndvlem10.b |  | 
						
							| 5 |  | knoppndvlem10.c |  | 
						
							| 6 |  | knoppndvlem10.j |  | 
						
							| 7 |  | knoppndvlem10.m |  | 
						
							| 8 |  | knoppndvlem10.n |  | 
						
							| 9 | 5 | adantr |  | 
						
							| 10 | 6 | adantr |  | 
						
							| 11 | 7 | peano2zd |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 8 | adantr |  | 
						
							| 14 |  | notnot |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 7 | adantr |  | 
						
							| 17 |  | oddp1even |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 15 18 | mtbid |  | 
						
							| 20 | 1 2 4 9 10 12 13 19 | knoppndvlem9 |  | 
						
							| 21 | 15 | notnotrd |  | 
						
							| 22 | 1 2 3 9 10 16 13 21 | knoppndvlem8 |  | 
						
							| 23 | 20 22 | oveq12d |  | 
						
							| 24 | 5 | knoppndvlem3 |  | 
						
							| 25 | 24 | simpld |  | 
						
							| 26 | 25 | recnd |  | 
						
							| 27 | 26 6 | expcld |  | 
						
							| 28 |  | 2cnd |  | 
						
							| 29 |  | 2ne0 |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 27 28 30 | divcld |  | 
						
							| 32 | 31 | subid1d |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 23 33 | eqtrd |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 4 | a1i |  | 
						
							| 37 | 6 | nn0zd |  | 
						
							| 38 | 8 37 11 | knoppndvlem1 |  | 
						
							| 39 | 36 38 | eqeltrd |  | 
						
							| 40 | 1 2 8 25 39 6 | knoppcnlem3 |  | 
						
							| 41 | 40 | recnd |  | 
						
							| 42 | 3 | a1i |  | 
						
							| 43 | 8 37 7 | knoppndvlem1 |  | 
						
							| 44 | 42 43 | eqeltrd |  | 
						
							| 45 | 1 2 8 25 44 6 | knoppcnlem3 |  | 
						
							| 46 | 45 | recnd |  | 
						
							| 47 | 41 46 | abssubd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 5 | adantr |  | 
						
							| 50 | 6 | adantr |  | 
						
							| 51 | 7 | adantr |  | 
						
							| 52 | 8 | adantr |  | 
						
							| 53 |  | simpr |  | 
						
							| 54 | 1 2 3 49 50 51 52 53 | knoppndvlem9 |  | 
						
							| 55 | 11 | adantr |  | 
						
							| 56 | 51 17 | syl |  | 
						
							| 57 | 53 56 | mpbid |  | 
						
							| 58 | 1 2 4 49 50 55 52 57 | knoppndvlem8 |  | 
						
							| 59 | 54 58 | oveq12d |  | 
						
							| 60 | 32 | adantr |  | 
						
							| 61 | 59 60 | eqtrd |  | 
						
							| 62 | 61 | fveq2d |  | 
						
							| 63 | 48 62 | eqtrd |  | 
						
							| 64 | 35 63 | pm2.61dan |  | 
						
							| 65 | 27 28 30 | absdivd |  | 
						
							| 66 | 26 6 | absexpd |  | 
						
							| 67 |  | 0le2 |  | 
						
							| 68 |  | 2re |  | 
						
							| 69 | 68 | absidi |  | 
						
							| 70 | 67 69 | ax-mp |  | 
						
							| 71 | 70 | a1i |  | 
						
							| 72 | 66 71 | oveq12d |  | 
						
							| 73 | 65 72 | eqtrd |  | 
						
							| 74 | 64 73 | eqtrd |  |