Metamath Proof Explorer


Theorem knoppndvlem19

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 17-Aug-2021)

Ref Expression
Hypotheses knoppndvlem19.a A = 2 N J 2 m
knoppndvlem19.b B = 2 N J 2 m + 1
knoppndvlem19.j φ J 0
knoppndvlem19.h φ H
knoppndvlem19.n φ N
Assertion knoppndvlem19 φ m A H H B

Proof

Step Hyp Ref Expression
1 knoppndvlem19.a A = 2 N J 2 m
2 knoppndvlem19.b B = 2 N J 2 m + 1
3 knoppndvlem19.j φ J 0
4 knoppndvlem19.h φ H
5 knoppndvlem19.n φ N
6 2re 2
7 6 a1i φ 2
8 5 nnred φ N
9 7 8 remulcld φ 2 N
10 2pos 0 < 2
11 10 a1i φ 0 < 2
12 5 nngt0d φ 0 < N
13 7 8 11 12 mulgt0d φ 0 < 2 N
14 13 gt0ne0d φ 2 N 0
15 3 nn0zd φ J
16 15 znegcld φ J
17 9 14 16 reexpclzd φ 2 N J
18 7 recnd φ 2
19 8 recnd φ N
20 18 19 14 mulne0bad φ 2 0
21 17 7 20 redivcld φ 2 N J 2
22 9 16 13 3jca φ 2 N J 0 < 2 N
23 expgt0 2 N J 0 < 2 N 0 < 2 N J
24 22 23 syl φ 0 < 2 N J
25 17 7 24 11 divgt0d φ 0 < 2 N J 2
26 25 gt0ne0d φ 2 N J 2 0
27 4 21 26 redivcld φ H 2 N J 2
28 27 flcld φ H 2 N J 2
29 1 a1i m = H 2 N J 2 A = 2 N J 2 m
30 id m = H 2 N J 2 m = H 2 N J 2
31 30 oveq2d m = H 2 N J 2 2 N J 2 m = 2 N J 2 H 2 N J 2
32 29 31 eqtrd m = H 2 N J 2 A = 2 N J 2 H 2 N J 2
33 32 breq1d m = H 2 N J 2 A H 2 N J 2 H 2 N J 2 H
34 2 a1i m = H 2 N J 2 B = 2 N J 2 m + 1
35 30 oveq1d m = H 2 N J 2 m + 1 = H 2 N J 2 + 1
36 35 oveq2d m = H 2 N J 2 2 N J 2 m + 1 = 2 N J 2 H 2 N J 2 + 1
37 34 36 eqtrd m = H 2 N J 2 B = 2 N J 2 H 2 N J 2 + 1
38 37 breq2d m = H 2 N J 2 H B H 2 N J 2 H 2 N J 2 + 1
39 33 38 anbi12d m = H 2 N J 2 A H H B 2 N J 2 H 2 N J 2 H H 2 N J 2 H 2 N J 2 + 1
40 39 adantl φ m = H 2 N J 2 A H H B 2 N J 2 H 2 N J 2 H H 2 N J 2 H 2 N J 2 + 1
41 28 zred φ H 2 N J 2
42 0red φ 0
43 42 21 25 ltled φ 0 2 N J 2
44 flle H 2 N J 2 H 2 N J 2 H 2 N J 2
45 27 44 syl φ H 2 N J 2 H 2 N J 2
46 41 27 21 43 45 lemul2ad φ 2 N J 2 H 2 N J 2 2 N J 2 H 2 N J 2
47 4 recnd φ H
48 21 recnd φ 2 N J 2
49 47 48 26 divcan2d φ 2 N J 2 H 2 N J 2 = H
50 46 49 breqtrd φ 2 N J 2 H 2 N J 2 H
51 49 eqcomd φ H = 2 N J 2 H 2 N J 2
52 peano2re H 2 N J 2 H 2 N J 2 + 1
53 41 52 syl φ H 2 N J 2 + 1
54 fllep1 H 2 N J 2 H 2 N J 2 H 2 N J 2 + 1
55 27 54 syl φ H 2 N J 2 H 2 N J 2 + 1
56 27 53 21 43 55 lemul2ad φ 2 N J 2 H 2 N J 2 2 N J 2 H 2 N J 2 + 1
57 51 56 eqbrtrd φ H 2 N J 2 H 2 N J 2 + 1
58 50 57 jca φ 2 N J 2 H 2 N J 2 H H 2 N J 2 H 2 N J 2 + 1
59 28 40 58 rspcedvd φ m A H H B