Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|
2 |
1
|
kqffn |
|
3 |
|
elpreima |
|
4 |
2 3
|
syl |
|
5 |
4
|
adantr |
|
6 |
|
noel |
|
7 |
|
elin |
|
8 |
|
incom |
|
9 |
|
eqid |
|
10 |
9
|
cldss |
|
11 |
10
|
adantl |
|
12 |
|
fndm |
|
13 |
2 12
|
syl |
|
14 |
|
toponuni |
|
15 |
13 14
|
eqtrd |
|
16 |
15
|
adantr |
|
17 |
11 16
|
sseqtrrd |
|
18 |
13
|
adantr |
|
19 |
17 18
|
sseqtrd |
|
20 |
19
|
adantr |
|
21 |
|
dfss4 |
|
22 |
20 21
|
sylib |
|
23 |
22
|
imaeq2d |
|
24 |
23
|
ineq2d |
|
25 |
|
simpll |
|
26 |
14
|
adantr |
|
27 |
26
|
difeq1d |
|
28 |
9
|
cldopn |
|
29 |
28
|
adantl |
|
30 |
27 29
|
eqeltrd |
|
31 |
30
|
adantr |
|
32 |
1
|
kqdisj |
|
33 |
25 31 32
|
syl2anc |
|
34 |
24 33
|
eqtr3d |
|
35 |
8 34
|
eqtrid |
|
36 |
35
|
eleq2d |
|
37 |
7 36
|
bitr3id |
|
38 |
6 37
|
mtbiri |
|
39 |
|
imnan |
|
40 |
38 39
|
sylibr |
|
41 |
|
eldif |
|
42 |
41
|
baibr |
|
43 |
42
|
adantl |
|
44 |
|
simpr |
|
45 |
1
|
kqfvima |
|
46 |
25 31 44 45
|
syl3anc |
|
47 |
43 46
|
bitrd |
|
48 |
47
|
con1bid |
|
49 |
40 48
|
sylibd |
|
50 |
49
|
expimpd |
|
51 |
5 50
|
sylbid |
|
52 |
51
|
ssrdv |
|
53 |
|
sseqin2 |
|
54 |
17 53
|
sylib |
|
55 |
|
dminss |
|
56 |
54 55
|
eqsstrrdi |
|
57 |
52 56
|
eqssd |
|