Metamath Proof Explorer


Theorem kqcldsat

Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqcldsat J TopOn X U Clsd J F -1 F U = U

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqffn J TopOn X F Fn X
3 elpreima F Fn X z F -1 F U z X F z F U
4 2 3 syl J TopOn X z F -1 F U z X F z F U
5 4 adantr J TopOn X U Clsd J z F -1 F U z X F z F U
6 noel ¬ F z
7 elin F z F U F X U F z F U F z F X U
8 incom F U F X U = F X U F U
9 eqid J = J
10 9 cldss U Clsd J U J
11 10 adantl J TopOn X U Clsd J U J
12 fndm F Fn X dom F = X
13 2 12 syl J TopOn X dom F = X
14 toponuni J TopOn X X = J
15 13 14 eqtrd J TopOn X dom F = J
16 15 adantr J TopOn X U Clsd J dom F = J
17 11 16 sseqtrrd J TopOn X U Clsd J U dom F
18 13 adantr J TopOn X U Clsd J dom F = X
19 17 18 sseqtrd J TopOn X U Clsd J U X
20 19 adantr J TopOn X U Clsd J z X U X
21 dfss4 U X X X U = U
22 20 21 sylib J TopOn X U Clsd J z X X X U = U
23 22 imaeq2d J TopOn X U Clsd J z X F X X U = F U
24 23 ineq2d J TopOn X U Clsd J z X F X U F X X U = F X U F U
25 simpll J TopOn X U Clsd J z X J TopOn X
26 14 adantr J TopOn X U Clsd J X = J
27 26 difeq1d J TopOn X U Clsd J X U = J U
28 9 cldopn U Clsd J J U J
29 28 adantl J TopOn X U Clsd J J U J
30 27 29 eqeltrd J TopOn X U Clsd J X U J
31 30 adantr J TopOn X U Clsd J z X X U J
32 1 kqdisj J TopOn X X U J F X U F X X U =
33 25 31 32 syl2anc J TopOn X U Clsd J z X F X U F X X U =
34 24 33 eqtr3d J TopOn X U Clsd J z X F X U F U =
35 8 34 eqtrid J TopOn X U Clsd J z X F U F X U =
36 35 eleq2d J TopOn X U Clsd J z X F z F U F X U F z
37 7 36 bitr3id J TopOn X U Clsd J z X F z F U F z F X U F z
38 6 37 mtbiri J TopOn X U Clsd J z X ¬ F z F U F z F X U
39 imnan F z F U ¬ F z F X U ¬ F z F U F z F X U
40 38 39 sylibr J TopOn X U Clsd J z X F z F U ¬ F z F X U
41 eldif z X U z X ¬ z U
42 41 baibr z X ¬ z U z X U
43 42 adantl J TopOn X U Clsd J z X ¬ z U z X U
44 simpr J TopOn X U Clsd J z X z X
45 1 kqfvima J TopOn X X U J z X z X U F z F X U
46 25 31 44 45 syl3anc J TopOn X U Clsd J z X z X U F z F X U
47 43 46 bitrd J TopOn X U Clsd J z X ¬ z U F z F X U
48 47 con1bid J TopOn X U Clsd J z X ¬ F z F X U z U
49 40 48 sylibd J TopOn X U Clsd J z X F z F U z U
50 49 expimpd J TopOn X U Clsd J z X F z F U z U
51 5 50 sylbid J TopOn X U Clsd J z F -1 F U z U
52 51 ssrdv J TopOn X U Clsd J F -1 F U U
53 sseqin2 U dom F dom F U = U
54 17 53 sylib J TopOn X U Clsd J dom F U = U
55 dminss dom F U F -1 F U
56 54 55 eqsstrrdi J TopOn X U Clsd J U F -1 F U
57 52 56 eqssd J TopOn X U Clsd J F -1 F U = U