Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem28.jn | |
||
lcfrlem29.i | |
||
lcfrlem30.m | |
||
lcfrlem30.c | |
||
lcfrlem37.g | |
||
lcfrlem37.gs | |
||
lcfrlem37.e | |
||
lcfrlem37.xe | |
||
lcfrlem37.ye | |
||
Assertion | lcfrlem37 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem28.jn | |
|
23 | lcfrlem29.i | |
|
24 | lcfrlem30.m | |
|
25 | lcfrlem30.c | |
|
26 | lcfrlem37.g | |
|
27 | lcfrlem37.gs | |
|
28 | lcfrlem37.e | |
|
29 | lcfrlem37.xe | |
|
30 | lcfrlem37.ye | |
|
31 | eqid | |
|
32 | 1 3 9 | dvhlmod | |
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | eldifsni | |
|
37 | 10 36 | syl | |
38 | eldifsn | |
|
39 | 29 37 38 | sylanbrc | |
40 | 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39 | lcfrlem16 | |
41 | eqid | |
|
42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | lcfrlem29 | |
43 | eldifsni | |
|
44 | 11 43 | syl | |
45 | eldifsn | |
|
46 | 30 44 45 | sylanbrc | |
47 | 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46 | lcfrlem16 | |
48 | 15 17 21 41 31 32 26 42 47 | ldualssvscl | |
49 | 21 24 31 32 26 40 48 | ldualssvsubcl | |
50 | 25 49 | eqeltrid | |
51 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | lcfrlem36 | |
52 | 2fveq3 | |
|
53 | 52 | eleq2d | |
54 | 53 | rspcev | |
55 | 50 51 54 | syl2anc | |
56 | eliun | |
|
57 | 55 56 | sylibr | |
58 | 57 28 | eleqtrrdi | |