Metamath Proof Explorer


Theorem lcfrlem37

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
lcfrlem37.g φ G LSubSp D
lcfrlem37.gs φ G f LFnl U | ˙ ˙ L f = L f
lcfrlem37.e E = g G ˙ L g
lcfrlem37.xe φ X E
lcfrlem37.ye φ Y E
Assertion lcfrlem37 φ X + ˙ Y E

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 lcfrlem37.g φ G LSubSp D
27 lcfrlem37.gs φ G f LFnl U | ˙ ˙ L f = L f
28 lcfrlem37.e E = g G ˙ L g
29 lcfrlem37.xe φ X E
30 lcfrlem37.ye φ Y E
31 eqid LSubSp D = LSubSp D
32 1 3 9 dvhlmod φ U LMod
33 eqid LFnl U = LFnl U
34 eqid 0 D = 0 D
35 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
36 eldifsni X V 0 ˙ X 0 ˙
37 10 36 syl φ X 0 ˙
38 eldifsn X E 0 ˙ X E X 0 ˙
39 29 37 38 sylanbrc φ X E 0 ˙
40 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39 lcfrlem16 φ J X G
41 eqid D = D
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem29 φ F J Y I S J X I R
43 eldifsni Y V 0 ˙ Y 0 ˙
44 11 43 syl φ Y 0 ˙
45 eldifsn Y E 0 ˙ Y E Y 0 ˙
46 30 44 45 sylanbrc φ Y E 0 ˙
47 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46 lcfrlem16 φ J Y G
48 15 17 21 41 31 32 26 42 47 ldualssvscl φ F J Y I S J X I D J Y G
49 21 24 31 32 26 40 48 ldualssvsubcl φ J X - ˙ F J Y I S J X I D J Y G
50 25 49 eqeltrid φ C G
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem36 φ X + ˙ Y ˙ L C
52 2fveq3 g = C ˙ L g = ˙ L C
53 52 eleq2d g = C X + ˙ Y ˙ L g X + ˙ Y ˙ L C
54 53 rspcev C G X + ˙ Y ˙ L C g G X + ˙ Y ˙ L g
55 50 51 54 syl2anc φ g G X + ˙ Y ˙ L g
56 eliun X + ˙ Y g G ˙ L g g G X + ˙ Y ˙ L g
57 55 56 sylibr φ X + ˙ Y g G ˙ L g
58 57 28 eleqtrrdi φ X + ˙ Y E