Metamath Proof Explorer


Theorem lcfrlem37

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
lcfrlem37.g φGLSubSpD
lcfrlem37.gs φGfLFnlU|˙˙Lf=Lf
lcfrlem37.e E=gG˙Lg
lcfrlem37.xe φXE
lcfrlem37.ye φYE
Assertion lcfrlem37 φX+˙YE

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 lcfrlem37.g φGLSubSpD
27 lcfrlem37.gs φGfLFnlU|˙˙Lf=Lf
28 lcfrlem37.e E=gG˙Lg
29 lcfrlem37.xe φXE
30 lcfrlem37.ye φYE
31 eqid LSubSpD=LSubSpD
32 1 3 9 dvhlmod φULMod
33 eqid LFnlU=LFnlU
34 eqid 0D=0D
35 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
36 eldifsni XV0˙X0˙
37 10 36 syl φX0˙
38 eldifsn XE0˙XEX0˙
39 29 37 38 sylanbrc φXE0˙
40 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39 lcfrlem16 φJXG
41 eqid D=D
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem29 φFJYISJXIR
43 eldifsni YV0˙Y0˙
44 11 43 syl φY0˙
45 eldifsn YE0˙YEY0˙
46 30 44 45 sylanbrc φYE0˙
47 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46 lcfrlem16 φJYG
48 15 17 21 41 31 32 26 42 47 ldualssvscl φFJYISJXIDJYG
49 21 24 31 32 26 40 48 ldualssvsubcl φJX-˙FJYISJXIDJYG
50 25 49 eqeltrid φCG
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem36 φX+˙Y˙LC
52 2fveq3 g=C˙Lg=˙LC
53 52 eleq2d g=CX+˙Y˙LgX+˙Y˙LC
54 53 rspcev CGX+˙Y˙LCgGX+˙Y˙Lg
55 50 51 54 syl2anc φgGX+˙Y˙Lg
56 eliun X+˙YgG˙LggGX+˙Y˙Lg
57 55 56 sylibr φX+˙YgG˙Lg
58 57 28 eleqtrrdi φX+˙YE