Metamath Proof Explorer


Theorem lclkrlem2g

Description: Lemma for lclkr . Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H = LHyp K
lclkrlem2f.o ˙ = ocH K W
lclkrlem2f.u U = DVecH K W
lclkrlem2f.v V = Base U
lclkrlem2f.s S = Scalar U
lclkrlem2f.q Q = 0 S
lclkrlem2f.z 0 ˙ = 0 U
lclkrlem2f.a ˙ = LSSum U
lclkrlem2f.n N = LSpan U
lclkrlem2f.f F = LFnl U
lclkrlem2f.j J = LSHyp U
lclkrlem2f.l L = LKer U
lclkrlem2f.d D = LDual U
lclkrlem2f.p + ˙ = + D
lclkrlem2f.k φ K HL W H
lclkrlem2f.b φ B V 0 ˙
lclkrlem2f.e φ E F
lclkrlem2f.g φ G F
lclkrlem2f.le φ L E = ˙ X
lclkrlem2f.lg φ L G = ˙ Y
lclkrlem2f.kb φ E + ˙ G B = Q
lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
lclkrlem2f.x φ X V 0 ˙
lclkrlem2f.y φ Y V 0 ˙
lclkrlem2f.ne φ L E L G
lclkrlem2f.lp φ L E + ˙ G J
Assertion lclkrlem2g φ ˙ ˙ L E + ˙ G = L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H = LHyp K
2 lclkrlem2f.o ˙ = ocH K W
3 lclkrlem2f.u U = DVecH K W
4 lclkrlem2f.v V = Base U
5 lclkrlem2f.s S = Scalar U
6 lclkrlem2f.q Q = 0 S
7 lclkrlem2f.z 0 ˙ = 0 U
8 lclkrlem2f.a ˙ = LSSum U
9 lclkrlem2f.n N = LSpan U
10 lclkrlem2f.f F = LFnl U
11 lclkrlem2f.j J = LSHyp U
12 lclkrlem2f.l L = LKer U
13 lclkrlem2f.d D = LDual U
14 lclkrlem2f.p + ˙ = + D
15 lclkrlem2f.k φ K HL W H
16 lclkrlem2f.b φ B V 0 ˙
17 lclkrlem2f.e φ E F
18 lclkrlem2f.g φ G F
19 lclkrlem2f.le φ L E = ˙ X
20 lclkrlem2f.lg φ L G = ˙ Y
21 lclkrlem2f.kb φ E + ˙ G B = Q
22 lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
23 lclkrlem2f.x φ X V 0 ˙
24 lclkrlem2f.y φ Y V 0 ˙
25 lclkrlem2f.ne φ L E L G
26 lclkrlem2f.lp φ L E + ˙ G J
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 lclkrlem2f φ L E L G ˙ N B L E + ˙ G
28 1 3 15 dvhlvec φ U LVec
29 19 20 ineq12d φ L E L G = ˙ X ˙ Y
30 29 oveq1d φ L E L G ˙ N B = ˙ X ˙ Y ˙ N B
31 eqid LSAtoms U = LSAtoms U
32 25 19 20 3netr3d φ ˙ X ˙ Y
33 1 2 3 4 7 8 9 31 15 16 23 24 32 22 11 lclkrlem2c φ ˙ X ˙ Y ˙ N B J
34 30 33 eqeltrd φ L E L G ˙ N B J
35 11 28 34 26 lshpcmp φ L E L G ˙ N B L E + ˙ G L E L G ˙ N B = L E + ˙ G
36 27 35 mpbid φ L E L G ˙ N B = L E + ˙ G
37 eqid DIsoH K W = DIsoH K W
38 1 2 3 4 7 8 9 31 15 16 23 24 32 22 37 lclkrlem2d φ ˙ X ˙ Y ˙ N B ran DIsoH K W
39 30 38 eqeltrd φ L E L G ˙ N B ran DIsoH K W
40 36 39 eqeltrrd φ L E + ˙ G ran DIsoH K W
41 1 3 37 4 dihrnss K HL W H L E + ˙ G ran DIsoH K W L E + ˙ G V
42 15 40 41 syl2anc φ L E + ˙ G V
43 1 37 3 4 2 15 42 dochoccl φ L E + ˙ G ran DIsoH K W ˙ ˙ L E + ˙ G = L E + ˙ G
44 40 43 mpbid φ ˙ ˙ L E + ˙ G = L E + ˙ G