Metamath Proof Explorer


Theorem lclkrslem1

Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace Q is closed under scalar product. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses lclkrslem1.h H=LHypK
lclkrslem1.o ˙=ocHKW
lclkrslem1.u U=DVecHKW
lclkrslem1.s S=LSubSpU
lclkrslem1.f F=LFnlU
lclkrslem1.l L=LKerU
lclkrslem1.d D=LDualU
lclkrslem1.r R=ScalarU
lclkrslem1.b B=BaseR
lclkrslem1.t ·˙=D
lclkrslem1.c C=fF|˙˙Lf=Lf˙LfQ
lclkrslem1.k φKHLWH
lclkrslem1.q φQS
lclkrslem1.g φGC
lclkrslem1.x φXB
Assertion lclkrslem1 φX·˙GC

Proof

Step Hyp Ref Expression
1 lclkrslem1.h H=LHypK
2 lclkrslem1.o ˙=ocHKW
3 lclkrslem1.u U=DVecHKW
4 lclkrslem1.s S=LSubSpU
5 lclkrslem1.f F=LFnlU
6 lclkrslem1.l L=LKerU
7 lclkrslem1.d D=LDualU
8 lclkrslem1.r R=ScalarU
9 lclkrslem1.b B=BaseR
10 lclkrslem1.t ·˙=D
11 lclkrslem1.c C=fF|˙˙Lf=Lf˙LfQ
12 lclkrslem1.k φKHLWH
13 lclkrslem1.q φQS
14 lclkrslem1.g φGC
15 lclkrslem1.x φXB
16 eqid fF|˙˙Lf=Lf=fF|˙˙Lf=Lf
17 11 16 lcfls1c GCGfF|˙˙Lf=Lf˙LGQ
18 17 simplbi GCGfF|˙˙Lf=Lf
19 14 18 syl φGfF|˙˙Lf=Lf
20 1 2 3 5 6 7 8 9 10 16 12 15 19 lclkrlem1 φX·˙GfF|˙˙Lf=Lf
21 eqid BaseU=BaseU
22 1 3 12 dvhlmod φULMod
23 11 lcfls1lem GCGF˙˙LG=LG˙LGQ
24 14 23 sylib φGF˙˙LG=LG˙LGQ
25 24 simp1d φGF
26 5 8 9 7 10 22 15 25 ldualvscl φX·˙GF
27 21 5 6 22 26 lkrssv φLX·˙GBaseU
28 1 3 12 dvhlvec φULVec
29 8 9 5 6 7 10 28 25 15 lkrss φLGLX·˙G
30 1 3 21 2 dochss KHLWHLX·˙GBaseULGLX·˙G˙LX·˙G˙LG
31 12 27 29 30 syl3anc φ˙LX·˙G˙LG
32 24 simp3d φ˙LGQ
33 31 32 sstrd φ˙LX·˙GQ
34 11 16 lcfls1c X·˙GCX·˙GfF|˙˙Lf=Lf˙LX·˙GQ
35 20 33 34 sylanbrc φX·˙GC