Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcmineqlem3.1 | |
|
lcmineqlem3.2 | |
||
lcmineqlem3.3 | |
||
lcmineqlem3.4 | |
||
Assertion | lcmineqlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem3.1 | |
|
2 | lcmineqlem3.2 | |
|
3 | lcmineqlem3.3 | |
|
4 | lcmineqlem3.4 | |
|
5 | 1 2 3 4 | lcmineqlem2 | |
6 | elunitcn | |
|
7 | 6 | 3ad2ant3 | |
8 | elfznn0 | |
|
9 | 8 | 3ad2ant2 | |
10 | nnm1nn0 | |
|
11 | 3 10 | syl | |
12 | 11 | 3ad2ant1 | |
13 | 7 9 12 | expaddd | |
14 | 13 | 3expa | |
15 | 14 | itgeq2dv | |
16 | 15 | oveq2d | |
17 | 16 | sumeq2dv | |
18 | 0red | |
|
19 | 1red | |
|
20 | 0le1 | |
|
21 | 20 | a1i | |
22 | 11 | adantr | |
23 | 8 | adantl | |
24 | 22 23 | nn0addcld | |
25 | 18 19 21 24 | itgpowd | |
26 | 3 | nncnd | |
27 | 26 | adantr | |
28 | 1cnd | |
|
29 | nn0cn | |
|
30 | 8 29 | syl | |
31 | 30 | adantl | |
32 | 27 28 31 | nppcand | |
33 | 32 | oveq2d | |
34 | 32 | oveq2d | |
35 | 33 34 | oveq12d | |
36 | 3 | adantr | |
37 | nnnn0addcl | |
|
38 | 36 23 37 | syl2anc | |
39 | 38 | nnzd | |
40 | 1exp | |
|
41 | 39 40 | syl | |
42 | 0exp | |
|
43 | 38 42 | syl | |
44 | 41 43 | oveq12d | |
45 | 35 44 | eqtrd | |
46 | 1m0e1 | |
|
47 | 45 46 | eqtrdi | |
48 | 47 32 | oveq12d | |
49 | 25 48 | eqtrd | |
50 | 49 | oveq2d | |
51 | 50 | sumeq2dv | |
52 | 5 17 51 | 3eqtr2d | |