Metamath Proof Explorer


Theorem lcmineqlem3

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024)

Ref Expression
Hypotheses lcmineqlem3.1 F=01xM11xNMdx
lcmineqlem3.2 φN
lcmineqlem3.3 φM
lcmineqlem3.4 φMN
Assertion lcmineqlem3 φF=k=0NM1k(NMk)1M+k

Proof

Step Hyp Ref Expression
1 lcmineqlem3.1 F=01xM11xNMdx
2 lcmineqlem3.2 φN
3 lcmineqlem3.3 φM
4 lcmineqlem3.4 φMN
5 1 2 3 4 lcmineqlem2 φF=k=0NM1k(NMk)01xM1xkdx
6 elunitcn x01x
7 6 3ad2ant3 φk0NMx01x
8 elfznn0 k0NMk0
9 8 3ad2ant2 φk0NMx01k0
10 nnm1nn0 MM10
11 3 10 syl φM10
12 11 3ad2ant1 φk0NMx01M10
13 7 9 12 expaddd φk0NMx01xM-1+k=xM1xk
14 13 3expa φk0NMx01xM-1+k=xM1xk
15 14 itgeq2dv φk0NM01xM-1+kdx=01xM1xkdx
16 15 oveq2d φk0NM1k(NMk)01xM-1+kdx=1k(NMk)01xM1xkdx
17 16 sumeq2dv φk=0NM1k(NMk)01xM-1+kdx=k=0NM1k(NMk)01xM1xkdx
18 0red φk0NM0
19 1red φk0NM1
20 0le1 01
21 20 a1i φk0NM01
22 11 adantr φk0NMM10
23 8 adantl φk0NMk0
24 22 23 nn0addcld φk0NMM-1+k0
25 18 19 21 24 itgpowd φk0NM01xM-1+kdx=1M1+k+10M1+k+1M1+k+1
26 3 nncnd φM
27 26 adantr φk0NMM
28 1cnd φk0NM1
29 nn0cn k0k
30 8 29 syl k0NMk
31 30 adantl φk0NMk
32 27 28 31 nppcand φk0NMM1+k+1=M+k
33 32 oveq2d φk0NM1M1+k+1=1M+k
34 32 oveq2d φk0NM0M1+k+1=0M+k
35 33 34 oveq12d φk0NM1M1+k+10M1+k+1=1M+k0M+k
36 3 adantr φk0NMM
37 nnnn0addcl Mk0M+k
38 36 23 37 syl2anc φk0NMM+k
39 38 nnzd φk0NMM+k
40 1exp M+k1M+k=1
41 39 40 syl φk0NM1M+k=1
42 0exp M+k0M+k=0
43 38 42 syl φk0NM0M+k=0
44 41 43 oveq12d φk0NM1M+k0M+k=10
45 35 44 eqtrd φk0NM1M1+k+10M1+k+1=10
46 1m0e1 10=1
47 45 46 eqtrdi φk0NM1M1+k+10M1+k+1=1
48 47 32 oveq12d φk0NM1M1+k+10M1+k+1M1+k+1=1M+k
49 25 48 eqtrd φk0NM01xM-1+kdx=1M+k
50 49 oveq2d φk0NM1k(NMk)01xM-1+kdx=1k(NMk)1M+k
51 50 sumeq2dv φk=0NM1k(NMk)01xM-1+kdx=k=0NM1k(NMk)1M+k
52 5 17 51 3eqtr2d φF=k=0NM1k(NMk)1M+k