Metamath Proof Explorer


Theorem lcmineqlem3

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024)

Ref Expression
Hypotheses lcmineqlem3.1 F = 0 1 x M 1 1 x N M dx
lcmineqlem3.2 φ N
lcmineqlem3.3 φ M
lcmineqlem3.4 φ M N
Assertion lcmineqlem3 φ F = k = 0 N M 1 k ( N M k) 1 M + k

Proof

Step Hyp Ref Expression
1 lcmineqlem3.1 F = 0 1 x M 1 1 x N M dx
2 lcmineqlem3.2 φ N
3 lcmineqlem3.3 φ M
4 lcmineqlem3.4 φ M N
5 1 2 3 4 lcmineqlem2 φ F = k = 0 N M 1 k ( N M k) 0 1 x M 1 x k dx
6 elunitcn x 0 1 x
7 6 3ad2ant3 φ k 0 N M x 0 1 x
8 elfznn0 k 0 N M k 0
9 8 3ad2ant2 φ k 0 N M x 0 1 k 0
10 nnm1nn0 M M 1 0
11 3 10 syl φ M 1 0
12 11 3ad2ant1 φ k 0 N M x 0 1 M 1 0
13 7 9 12 expaddd φ k 0 N M x 0 1 x M - 1 + k = x M 1 x k
14 13 3expa φ k 0 N M x 0 1 x M - 1 + k = x M 1 x k
15 14 itgeq2dv φ k 0 N M 0 1 x M - 1 + k dx = 0 1 x M 1 x k dx
16 15 oveq2d φ k 0 N M 1 k ( N M k) 0 1 x M - 1 + k dx = 1 k ( N M k) 0 1 x M 1 x k dx
17 16 sumeq2dv φ k = 0 N M 1 k ( N M k) 0 1 x M - 1 + k dx = k = 0 N M 1 k ( N M k) 0 1 x M 1 x k dx
18 0red φ k 0 N M 0
19 1red φ k 0 N M 1
20 0le1 0 1
21 20 a1i φ k 0 N M 0 1
22 11 adantr φ k 0 N M M 1 0
23 8 adantl φ k 0 N M k 0
24 22 23 nn0addcld φ k 0 N M M - 1 + k 0
25 18 19 21 24 itgpowd φ k 0 N M 0 1 x M - 1 + k dx = 1 M 1 + k + 1 0 M 1 + k + 1 M 1 + k + 1
26 3 nncnd φ M
27 26 adantr φ k 0 N M M
28 1cnd φ k 0 N M 1
29 nn0cn k 0 k
30 8 29 syl k 0 N M k
31 30 adantl φ k 0 N M k
32 27 28 31 nppcand φ k 0 N M M 1 + k + 1 = M + k
33 32 oveq2d φ k 0 N M 1 M 1 + k + 1 = 1 M + k
34 32 oveq2d φ k 0 N M 0 M 1 + k + 1 = 0 M + k
35 33 34 oveq12d φ k 0 N M 1 M 1 + k + 1 0 M 1 + k + 1 = 1 M + k 0 M + k
36 3 adantr φ k 0 N M M
37 nnnn0addcl M k 0 M + k
38 36 23 37 syl2anc φ k 0 N M M + k
39 38 nnzd φ k 0 N M M + k
40 1exp M + k 1 M + k = 1
41 39 40 syl φ k 0 N M 1 M + k = 1
42 0exp M + k 0 M + k = 0
43 38 42 syl φ k 0 N M 0 M + k = 0
44 41 43 oveq12d φ k 0 N M 1 M + k 0 M + k = 1 0
45 35 44 eqtrd φ k 0 N M 1 M 1 + k + 1 0 M 1 + k + 1 = 1 0
46 1m0e1 1 0 = 1
47 45 46 eqtrdi φ k 0 N M 1 M 1 + k + 1 0 M 1 + k + 1 = 1
48 47 32 oveq12d φ k 0 N M 1 M 1 + k + 1 0 M 1 + k + 1 M 1 + k + 1 = 1 M + k
49 25 48 eqtrd φ k 0 N M 0 1 x M - 1 + k dx = 1 M + k
50 49 oveq2d φ k 0 N M 1 k ( N M k) 0 1 x M - 1 + k dx = 1 k ( N M k) 1 M + k
51 50 sumeq2dv φ k = 0 N M 1 k ( N M k) 0 1 x M - 1 + k dx = k = 0 N M 1 k ( N M k) 1 M + k
52 5 17 51 3eqtr2d φ F = k = 0 N M 1 k ( N M k) 1 M + k