Metamath Proof Explorer


Theorem lco0

Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion lco0 MMndMLinCo=0M

Proof

Step Hyp Ref Expression
1 0elpw 𝒫BaseM
2 eqid BaseM=BaseM
3 eqid ScalarM=ScalarM
4 eqid BaseScalarM=BaseScalarM
5 2 3 4 lcoop MMnd𝒫BaseMMLinCo=vBaseM|wBaseScalarMfinSupp0ScalarMwv=wlinCM
6 1 5 mpan2 MMndMLinCo=vBaseM|wBaseScalarMfinSupp0ScalarMwv=wlinCM
7 fvex BaseScalarMV
8 map0e BaseScalarMVBaseScalarM=1𝑜
9 7 8 mp1i MMndvBaseMBaseScalarM=1𝑜
10 df1o2 1𝑜=
11 9 10 eqtrdi MMndvBaseMBaseScalarM=
12 11 rexeqdv MMndvBaseMwBaseScalarMfinSupp0ScalarMwv=wlinCMwfinSupp0ScalarMwv=wlinCM
13 lincval0 MMndlinCM=0M
14 13 adantr MMndvBaseMlinCM=0M
15 14 eqeq2d MMndvBaseMv=linCMv=0M
16 15 anbi2d MMndvBaseMFinv=linCMFinv=0M
17 0ex V
18 breq1 w=finSupp0ScalarMwfinSupp0ScalarM
19 fvex 0ScalarMV
20 0fsupp 0ScalarMVfinSupp0ScalarM
21 19 20 ax-mp finSupp0ScalarM
22 0fin Fin
23 21 22 2th finSupp0ScalarMFin
24 18 23 bitrdi w=finSupp0ScalarMwFin
25 oveq1 w=wlinCM=linCM
26 25 eqeq2d w=v=wlinCMv=linCM
27 24 26 anbi12d w=finSupp0ScalarMwv=wlinCMFinv=linCM
28 27 rexsng VwfinSupp0ScalarMwv=wlinCMFinv=linCM
29 17 28 mp1i MMndvBaseMwfinSupp0ScalarMwv=wlinCMFinv=linCM
30 22 a1i MMndvBaseMFin
31 30 biantrurd MMndvBaseMv=0MFinv=0M
32 16 29 31 3bitr4d MMndvBaseMwfinSupp0ScalarMwv=wlinCMv=0M
33 12 32 bitrd MMndvBaseMwBaseScalarMfinSupp0ScalarMwv=wlinCMv=0M
34 33 rabbidva MMndvBaseM|wBaseScalarMfinSupp0ScalarMwv=wlinCM=vBaseM|v=0M
35 eqid 0M=0M
36 2 35 mndidcl MMnd0MBaseM
37 rabsn 0MBaseMvBaseM|v=0M=0M
38 36 37 syl MMndvBaseM|v=0M=0M
39 6 34 38 3eqtrd MMndMLinCo=0M