Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lco0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 2 3 4 | lcoop | |
6 | 1 5 | mpan2 | |
7 | fvex | |
|
8 | map0e | |
|
9 | 7 8 | mp1i | |
10 | df1o2 | |
|
11 | 9 10 | eqtrdi | |
12 | 11 | rexeqdv | |
13 | lincval0 | |
|
14 | 13 | adantr | |
15 | 14 | eqeq2d | |
16 | 15 | anbi2d | |
17 | 0ex | |
|
18 | breq1 | |
|
19 | fvex | |
|
20 | 0fsupp | |
|
21 | 19 20 | ax-mp | |
22 | 0fin | |
|
23 | 21 22 | 2th | |
24 | 18 23 | bitrdi | |
25 | oveq1 | |
|
26 | 25 | eqeq2d | |
27 | 24 26 | anbi12d | |
28 | 27 | rexsng | |
29 | 17 28 | mp1i | |
30 | 22 | a1i | |
31 | 30 | biantrurd | |
32 | 16 29 31 | 3bitr4d | |
33 | 12 32 | bitrd | |
34 | 33 | rabbidva | |
35 | eqid | |
|
36 | 2 35 | mndidcl | |
37 | rabsn | |
|
38 | 36 37 | syl | |
39 | 6 34 38 | 3eqtrd | |