Step |
Hyp |
Ref |
Expression |
1 |
|
lidldomn1.l |
|
2 |
|
lidldomn1.t |
|
3 |
|
lidldomn1.1 |
|
4 |
|
lidldomn1.0 |
|
5 |
|
domnring |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
simp2l |
|
8 |
|
simp2r |
|
9 |
1 4
|
lidlnz |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
|
oveq2 |
|
12 |
|
id |
|
13 |
11 12
|
eqeq12d |
|
14 |
|
oveq1 |
|
15 |
14 12
|
eqeq12d |
|
16 |
13 15
|
anbi12d |
|
17 |
16
|
rspcva |
|
18 |
6
|
adantr |
|
19 |
|
eqid |
|
20 |
19 1
|
lidlss |
|
21 |
20
|
adantr |
|
22 |
21
|
3ad2ant2 |
|
23 |
22
|
sseld |
|
24 |
23
|
com12 |
|
25 |
24
|
adantr |
|
26 |
25
|
impcom |
|
27 |
19 2 3
|
ringlidm |
|
28 |
18 26 27
|
syl2anc |
|
29 |
|
eqeq2 |
|
30 |
29
|
eqcoms |
|
31 |
30
|
adantl |
|
32 |
|
ringgrp |
|
33 |
5 32
|
syl |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
adantr |
|
36 |
21
|
sseld |
|
37 |
36
|
a1i |
|
38 |
37
|
3imp |
|
39 |
38
|
adantr |
|
40 |
19 2
|
ringcl |
|
41 |
18 39 26 40
|
syl3anc |
|
42 |
19 3
|
ringidcl |
|
43 |
5 42
|
syl |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
adantr |
|
46 |
19 2
|
ringcl |
|
47 |
18 45 26 46
|
syl3anc |
|
48 |
|
eqid |
|
49 |
19 4 48
|
grpsubeq0 |
|
50 |
35 41 47 49
|
syl3anc |
|
51 |
19 2 48 18 39 45 26
|
rngsubdir |
|
52 |
51
|
eqeq1d |
|
53 |
|
simpl1 |
|
54 |
34 38 44
|
3jca |
|
55 |
54
|
adantr |
|
56 |
19 48
|
grpsubcl |
|
57 |
55 56
|
syl |
|
58 |
19 2 4
|
domneq0 |
|
59 |
53 57 26 58
|
syl3anc |
|
60 |
19 4 48
|
grpsubeq0 |
|
61 |
55 60
|
syl |
|
62 |
61
|
biimpd |
|
63 |
|
eqneqall |
|
64 |
63
|
com12 |
|
65 |
64
|
adantl |
|
66 |
65
|
adantl |
|
67 |
62 66
|
jaod |
|
68 |
59 67
|
sylbid |
|
69 |
52 68
|
sylbird |
|
70 |
50 69
|
sylbird |
|
71 |
70
|
adantr |
|
72 |
31 71
|
sylbid |
|
73 |
28 72
|
mpdan |
|
74 |
73
|
ex |
|
75 |
74
|
com13 |
|
76 |
75
|
expd |
|
77 |
76
|
adantr |
|
78 |
17 77
|
syl |
|
79 |
78
|
ex |
|
80 |
79
|
pm2.43b |
|
81 |
80
|
com14 |
|
82 |
81
|
imp |
|
83 |
82
|
rexlimdva |
|
84 |
10 83
|
mpd |
|