Metamath Proof Explorer


Theorem limcco

Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses limcco.r φxARCRB
limcco.s φyBS
limcco.c φCxARlimX
limcco.d φDyBSlimC
limcco.1 y=RS=T
limcco.2 φxAR=CT=D
Assertion limcco φDxATlimX

Proof

Step Hyp Ref Expression
1 limcco.r φxARCRB
2 limcco.s φyBS
3 limcco.c φCxARlimX
4 limcco.d φDyBSlimC
5 limcco.1 y=RS=T
6 limcco.2 φxAR=CT=D
7 1 expr φxARCRB
8 7 necon1bd φxA¬RBR=C
9 limccl xARlimX
10 9 3 sselid φC
11 10 adantr φxAC
12 elsn2g CRCR=C
13 11 12 syl φxARCR=C
14 8 13 sylibrd φxA¬RBRC
15 14 orrd φxARBRC
16 elun RBCRBRC
17 15 16 sylibr φxARBC
18 17 fmpttd φxAR:ABC
19 eqid yBS=yBS
20 19 2 dmmptd φdomyBS=B
21 limcrcl DyBSlimCyBS:domyBSdomyBSC
22 4 21 syl φyBS:domyBSdomyBSC
23 22 simp2d φdomyBS
24 20 23 eqsstrrd φB
25 10 snssd φC
26 24 25 unssd φBC
27 eqid TopOpenfld=TopOpenfld
28 eqid TopOpenfld𝑡BC=TopOpenfld𝑡BC
29 24 10 2 28 27 limcmpt φDyBSlimCyBCify=CDSTopOpenfld𝑡BCCnPTopOpenfldC
30 4 29 mpbid φyBCify=CDSTopOpenfld𝑡BCCnPTopOpenfldC
31 18 26 27 28 3 30 limccnp φyBCify=CDSCyBCify=CDSxARlimX
32 eqid yBCify=CDS=yBCify=CDS
33 iftrue y=Cify=CDS=D
34 ssun2 CBC
35 snssg CxARlimXCBCCBC
36 3 35 syl φCBCCBC
37 34 36 mpbiri φCBC
38 32 33 37 4 fvmptd3 φyBCify=CDSC=D
39 eqidd φxAR=xAR
40 eqidd φyBCify=CDS=yBCify=CDS
41 eqeq1 y=Ry=CR=C
42 41 5 ifbieq2d y=Rify=CDS=ifR=CDT
43 17 39 40 42 fmptco φyBCify=CDSxAR=xAifR=CDT
44 6 anassrs φxAR=CT=D
45 44 ifeq1da φxAifR=CTT=ifR=CDT
46 ifid ifR=CTT=T
47 45 46 eqtr3di φxAifR=CDT=T
48 47 mpteq2dva φxAifR=CDT=xAT
49 43 48 eqtrd φyBCify=CDSxAR=xAT
50 49 oveq1d φyBCify=CDSxARlimX=xATlimX
51 31 38 50 3eltr3d φDxATlimX