Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcco.r | |
|
limcco.s | |
||
limcco.c | |
||
limcco.d | |
||
limcco.1 | |
||
limcco.2 | |
||
Assertion | limcco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcco.r | |
|
2 | limcco.s | |
|
3 | limcco.c | |
|
4 | limcco.d | |
|
5 | limcco.1 | |
|
6 | limcco.2 | |
|
7 | 1 | expr | |
8 | 7 | necon1bd | |
9 | limccl | |
|
10 | 9 3 | sselid | |
11 | 10 | adantr | |
12 | elsn2g | |
|
13 | 11 12 | syl | |
14 | 8 13 | sylibrd | |
15 | 14 | orrd | |
16 | elun | |
|
17 | 15 16 | sylibr | |
18 | 17 | fmpttd | |
19 | eqid | |
|
20 | 19 2 | dmmptd | |
21 | limcrcl | |
|
22 | 4 21 | syl | |
23 | 22 | simp2d | |
24 | 20 23 | eqsstrrd | |
25 | 10 | snssd | |
26 | 24 25 | unssd | |
27 | eqid | |
|
28 | eqid | |
|
29 | 24 10 2 28 27 | limcmpt | |
30 | 4 29 | mpbid | |
31 | 18 26 27 28 3 30 | limccnp | |
32 | eqid | |
|
33 | iftrue | |
|
34 | ssun2 | |
|
35 | snssg | |
|
36 | 3 35 | syl | |
37 | 34 36 | mpbiri | |
38 | 32 33 37 4 | fvmptd3 | |
39 | eqidd | |
|
40 | eqidd | |
|
41 | eqeq1 | |
|
42 | 41 5 | ifbieq2d | |
43 | 17 39 40 42 | fmptco | |
44 | 6 | anassrs | |
45 | 44 | ifeq1da | |
46 | ifid | |
|
47 | 45 46 | eqtr3di | |
48 | 47 | mpteq2dva | |
49 | 43 48 | eqtrd | |
50 | 49 | oveq1d | |
51 | 31 38 50 | 3eltr3d | |