Metamath Proof Explorer


Theorem limcco

Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses limcco.r φ x A R C R B
limcco.s φ y B S
limcco.c φ C x A R lim X
limcco.d φ D y B S lim C
limcco.1 y = R S = T
limcco.2 φ x A R = C T = D
Assertion limcco φ D x A T lim X

Proof

Step Hyp Ref Expression
1 limcco.r φ x A R C R B
2 limcco.s φ y B S
3 limcco.c φ C x A R lim X
4 limcco.d φ D y B S lim C
5 limcco.1 y = R S = T
6 limcco.2 φ x A R = C T = D
7 1 expr φ x A R C R B
8 7 necon1bd φ x A ¬ R B R = C
9 limccl x A R lim X
10 9 3 sseldi φ C
11 10 adantr φ x A C
12 elsn2g C R C R = C
13 11 12 syl φ x A R C R = C
14 8 13 sylibrd φ x A ¬ R B R C
15 14 orrd φ x A R B R C
16 elun R B C R B R C
17 15 16 sylibr φ x A R B C
18 17 fmpttd φ x A R : A B C
19 eqid y B S = y B S
20 19 2 dmmptd φ dom y B S = B
21 limcrcl D y B S lim C y B S : dom y B S dom y B S C
22 4 21 syl φ y B S : dom y B S dom y B S C
23 22 simp2d φ dom y B S
24 20 23 eqsstrrd φ B
25 10 snssd φ C
26 24 25 unssd φ B C
27 eqid TopOpen fld = TopOpen fld
28 eqid TopOpen fld 𝑡 B C = TopOpen fld 𝑡 B C
29 24 10 2 28 27 limcmpt φ D y B S lim C y B C if y = C D S TopOpen fld 𝑡 B C CnP TopOpen fld C
30 4 29 mpbid φ y B C if y = C D S TopOpen fld 𝑡 B C CnP TopOpen fld C
31 18 26 27 28 3 30 limccnp φ y B C if y = C D S C y B C if y = C D S x A R lim X
32 eqid y B C if y = C D S = y B C if y = C D S
33 iftrue y = C if y = C D S = D
34 ssun2 C B C
35 snssg C x A R lim X C B C C B C
36 3 35 syl φ C B C C B C
37 34 36 mpbiri φ C B C
38 32 33 37 4 fvmptd3 φ y B C if y = C D S C = D
39 eqidd φ x A R = x A R
40 eqidd φ y B C if y = C D S = y B C if y = C D S
41 eqeq1 y = R y = C R = C
42 41 5 ifbieq2d y = R if y = C D S = if R = C D T
43 17 39 40 42 fmptco φ y B C if y = C D S x A R = x A if R = C D T
44 ifid if R = C T T = T
45 6 anassrs φ x A R = C T = D
46 45 ifeq1da φ x A if R = C T T = if R = C D T
47 44 46 syl5reqr φ x A if R = C D T = T
48 47 mpteq2dva φ x A if R = C D T = x A T
49 43 48 eqtrd φ y B C if y = C D S x A R = x A T
50 49 oveq1d φ y B C if y = C D S x A R lim X = x A T lim X
51 31 38 50 3eltr3d φ D x A T lim X