Metamath Proof Explorer


Theorem liminfltlem

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfltlem.m φM
liminfltlem.z Z=M
liminfltlem.f φF:Z
liminfltlem.r φlim infF
liminfltlem.x φX+
Assertion liminfltlem φjZkjlim infF<Fk+X

Proof

Step Hyp Ref Expression
1 liminfltlem.m φM
2 liminfltlem.z Z=M
3 liminfltlem.f φF:Z
4 liminfltlem.r φlim infF
5 liminfltlem.x φX+
6 nfmpt1 _kkZFk
7 3 ffvelcdmda φkZFk
8 7 renegcld φkZFk
9 8 fmpttd φkZFk:Z
10 2 fvexi ZV
11 10 mptex kZFkV
12 11 limsupcli lim supkZFk*
13 12 a1i φlim supkZFk*
14 nfv kφ
15 nfcv _kF
16 14 15 1 2 3 liminfvaluz4 φlim infF=lim supkZFk
17 16 4 eqeltrrd φlim supkZFk
18 13 17 xnegrecl2d φlim supkZFk
19 6 1 2 9 18 5 limsupgt φjZkjkZFkkX<lim supkZFk
20 simpll φjZkjφ
21 2 uztrn2 jZkjkZ
22 21 adantll φjZkjkZ
23 negex FkV
24 fvmpt4 kZFkVkZFkk=Fk
25 23 24 mpan2 kZkZFkk=Fk
26 25 adantl φkZkZFkk=Fk
27 26 oveq1d φkZkZFkkX=-Fk-X
28 7 recnd φkZFk
29 5 rpred φX
30 29 adantr φkZX
31 30 recnd φkZX
32 28 31 negdi2d φkZFk+X=-Fk-X
33 27 32 eqtr4d φkZkZFkkX=Fk+X
34 18 recnd φlim supkZFk
35 18 rexnegd φlim supkZFk=lim supkZFk
36 16 35 eqtr2d φlim supkZFk=lim infF
37 34 36 negcon1ad φlim infF=lim supkZFk
38 37 eqcomd φlim supkZFk=lim infF
39 38 adantr φkZlim supkZFk=lim infF
40 33 39 breq12d φkZkZFkkX<lim supkZFkFk+X<lim infF
41 4 adantr φkZlim infF
42 7 30 readdcld φkZFk+X
43 41 42 ltnegd φkZlim infF<Fk+XFk+X<lim infF
44 40 43 bitr4d φkZkZFkkX<lim supkZFklim infF<Fk+X
45 20 22 44 syl2anc φjZkjkZFkkX<lim supkZFklim infF<Fk+X
46 45 ralbidva φjZkjkZFkkX<lim supkZFkkjlim infF<Fk+X
47 46 rexbidva φjZkjkZFkkX<lim supkZFkjZkjlim infF<Fk+X
48 19 47 mpbid φjZkjlim infF<Fk+X