Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfltlem.m | |
|
liminfltlem.z | |
||
liminfltlem.f | |
||
liminfltlem.r | |
||
liminfltlem.x | |
||
Assertion | liminfltlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfltlem.m | |
|
2 | liminfltlem.z | |
|
3 | liminfltlem.f | |
|
4 | liminfltlem.r | |
|
5 | liminfltlem.x | |
|
6 | nfmpt1 | |
|
7 | 3 | ffvelcdmda | |
8 | 7 | renegcld | |
9 | 8 | fmpttd | |
10 | 2 | fvexi | |
11 | 10 | mptex | |
12 | 11 | limsupcli | |
13 | 12 | a1i | |
14 | nfv | |
|
15 | nfcv | |
|
16 | 14 15 1 2 3 | liminfvaluz4 | |
17 | 16 4 | eqeltrrd | |
18 | 13 17 | xnegrecl2d | |
19 | 6 1 2 9 18 5 | limsupgt | |
20 | simpll | |
|
21 | 2 | uztrn2 | |
22 | 21 | adantll | |
23 | negex | |
|
24 | fvmpt4 | |
|
25 | 23 24 | mpan2 | |
26 | 25 | adantl | |
27 | 26 | oveq1d | |
28 | 7 | recnd | |
29 | 5 | rpred | |
30 | 29 | adantr | |
31 | 30 | recnd | |
32 | 28 31 | negdi2d | |
33 | 27 32 | eqtr4d | |
34 | 18 | recnd | |
35 | 18 | rexnegd | |
36 | 16 35 | eqtr2d | |
37 | 34 36 | negcon1ad | |
38 | 37 | eqcomd | |
39 | 38 | adantr | |
40 | 33 39 | breq12d | |
41 | 4 | adantr | |
42 | 7 30 | readdcld | |
43 | 41 42 | ltnegd | |
44 | 40 43 | bitr4d | |
45 | 20 22 44 | syl2anc | |
46 | 45 | ralbidva | |
47 | 46 | rexbidva | |
48 | 19 47 | mpbid | |