Metamath Proof Explorer


Theorem liminfltlem

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfltlem.m φ M
liminfltlem.z Z = M
liminfltlem.f φ F : Z
liminfltlem.r φ lim inf F
liminfltlem.x φ X +
Assertion liminfltlem φ j Z k j lim inf F < F k + X

Proof

Step Hyp Ref Expression
1 liminfltlem.m φ M
2 liminfltlem.z Z = M
3 liminfltlem.f φ F : Z
4 liminfltlem.r φ lim inf F
5 liminfltlem.x φ X +
6 nfmpt1 _ k k Z F k
7 3 ffvelrnda φ k Z F k
8 7 renegcld φ k Z F k
9 8 fmpttd φ k Z F k : Z
10 2 fvexi Z V
11 10 mptex k Z F k V
12 11 limsupcli lim sup k Z F k *
13 12 a1i φ lim sup k Z F k *
14 nfv k φ
15 nfcv _ k F
16 14 15 1 2 3 liminfvaluz4 φ lim inf F = lim sup k Z F k
17 16 4 eqeltrrd φ lim sup k Z F k
18 13 17 xnegrecl2d φ lim sup k Z F k
19 6 1 2 9 18 5 limsupgt φ j Z k j k Z F k k X < lim sup k Z F k
20 simpll φ j Z k j φ
21 2 uztrn2 j Z k j k Z
22 21 adantll φ j Z k j k Z
23 negex F k V
24 fvmpt4 k Z F k V k Z F k k = F k
25 23 24 mpan2 k Z k Z F k k = F k
26 25 adantl φ k Z k Z F k k = F k
27 26 oveq1d φ k Z k Z F k k X = - F k - X
28 7 recnd φ k Z F k
29 5 rpred φ X
30 29 adantr φ k Z X
31 30 recnd φ k Z X
32 28 31 negdi2d φ k Z F k + X = - F k - X
33 27 32 eqtr4d φ k Z k Z F k k X = F k + X
34 18 recnd φ lim sup k Z F k
35 18 rexnegd φ lim sup k Z F k = lim sup k Z F k
36 16 35 eqtr2d φ lim sup k Z F k = lim inf F
37 34 36 negcon1ad φ lim inf F = lim sup k Z F k
38 37 eqcomd φ lim sup k Z F k = lim inf F
39 38 adantr φ k Z lim sup k Z F k = lim inf F
40 33 39 breq12d φ k Z k Z F k k X < lim sup k Z F k F k + X < lim inf F
41 4 adantr φ k Z lim inf F
42 7 30 readdcld φ k Z F k + X
43 41 42 ltnegd φ k Z lim inf F < F k + X F k + X < lim inf F
44 40 43 bitr4d φ k Z k Z F k k X < lim sup k Z F k lim inf F < F k + X
45 20 22 44 syl2anc φ j Z k j k Z F k k X < lim sup k Z F k lim inf F < F k + X
46 45 ralbidva φ j Z k j k Z F k k X < lim sup k Z F k k j lim inf F < F k + X
47 46 rexbidva φ j Z k j k Z F k k X < lim sup k Z F k j Z k j lim inf F < F k + X
48 19 47 mpbid φ j Z k j lim inf F < F k + X