Metamath Proof Explorer


Theorem limsupgle

Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsupgle BF:B*CA*GCAjBCjFjA

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 1 limsupgval CGC=supFC+∞**<
3 2 3ad2ant2 BF:B*CA*GC=supFC+∞**<
4 3 breq1d BF:B*CA*GCAsupFC+∞**<A
5 inss2 FC+∞**
6 simp3 BF:B*CA*A*
7 supxrleub FC+∞**A*supFC+∞**<AxFC+∞*xA
8 5 6 7 sylancr BF:B*CA*supFC+∞**<AxFC+∞*xA
9 imassrn FC+∞ranF
10 simp1r BF:B*CA*F:B*
11 10 frnd BF:B*CA*ranF*
12 9 11 sstrid BF:B*CA*FC+∞*
13 df-ss FC+∞*FC+∞*=FC+∞
14 12 13 sylib BF:B*CA*FC+∞*=FC+∞
15 imadmres FdomFC+∞=FC+∞
16 14 15 eqtr4di BF:B*CA*FC+∞*=FdomFC+∞
17 16 raleqdv BF:B*CA*xFC+∞*xAxFdomFC+∞xA
18 10 ffnd BF:B*CA*FFnB
19 10 fdmd BF:B*CA*domF=B
20 19 ineq2d BF:B*CA*C+∞domF=C+∞B
21 dmres domFC+∞=C+∞domF
22 incom BC+∞=C+∞B
23 20 21 22 3eqtr4g BF:B*CA*domFC+∞=BC+∞
24 inss1 BC+∞B
25 23 24 eqsstrdi BF:B*CA*domFC+∞B
26 breq1 x=FjxAFjA
27 26 ralima FFnBdomFC+∞BxFdomFC+∞xAjdomFC+∞FjA
28 18 25 27 syl2anc BF:B*CA*xFdomFC+∞xAjdomFC+∞FjA
29 23 eleq2d BF:B*CA*jdomFC+∞jBC+∞
30 elin jBC+∞jBjC+∞
31 29 30 bitrdi BF:B*CA*jdomFC+∞jBjC+∞
32 simpl2 BF:B*CA*jBC
33 simp1l BF:B*CA*B
34 33 sselda BF:B*CA*jBj
35 elicopnf CjC+∞jCj
36 35 baibd CjjC+∞Cj
37 32 34 36 syl2anc BF:B*CA*jBjC+∞Cj
38 37 pm5.32da BF:B*CA*jBjC+∞jBCj
39 31 38 bitrd BF:B*CA*jdomFC+∞jBCj
40 39 imbi1d BF:B*CA*jdomFC+∞FjAjBCjFjA
41 impexp jBCjFjAjBCjFjA
42 40 41 bitrdi BF:B*CA*jdomFC+∞FjAjBCjFjA
43 42 ralbidv2 BF:B*CA*jdomFC+∞FjAjBCjFjA
44 17 28 43 3bitrd BF:B*CA*xFC+∞*xAjBCjFjA
45 4 8 44 3bitrd BF:B*CA*GCAjBCjFjA