Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 ), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019) (Revised by AV, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindsrng01.b | |
|
lindsrng01.r | |
||
lindsrng01.e | |
||
Assertion | lindsrng01 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindsrng01.b | |
|
2 | lindsrng01.r | |
|
3 | lindsrng01.e | |
|
4 | 2 3 | lmodsn0 | |
5 | 3 | fvexi | |
6 | hasheq0 | |
|
7 | 5 6 | ax-mp | |
8 | eqneqall | |
|
9 | 8 | com12 | |
10 | 7 9 | biimtrid | |
11 | 4 10 | syl | |
12 | 11 | adantr | |
13 | 12 | com12 | |
14 | 2 | lmodring | |
15 | 14 | adantr | |
16 | eqid | |
|
17 | 3 16 | 0ring | |
18 | 15 17 | sylan | |
19 | simpr | |
|
20 | 19 | adantr | |
21 | 20 | adantl | |
22 | snex | |
|
23 | 20 22 | jctil | |
24 | 23 | adantl | |
25 | elmapg | |
|
26 | 24 25 | syl | |
27 | fvex | |
|
28 | 27 | fconst2 | |
29 | fconstmpt | |
|
30 | 29 | eqeq2i | |
31 | 28 30 | bitri | |
32 | eqidd | |
|
33 | eqidd | |
|
34 | simpr | |
|
35 | fvexd | |
|
36 | 32 33 34 35 | fvmptd | |
37 | 36 | ralrimiva | |
38 | 37 | a1d | |
39 | breq1 | |
|
40 | oveq1 | |
|
41 | 40 | eqeq1d | |
42 | 39 41 | anbi12d | |
43 | fveq1 | |
|
44 | 43 | eqeq1d | |
45 | 44 | ralbidv | |
46 | 42 45 | imbi12d | |
47 | 38 46 | syl5ibrcom | |
48 | 31 47 | biimtrid | |
49 | 26 48 | sylbid | |
50 | 49 | ralrimiv | |
51 | oveq1 | |
|
52 | 51 | raleqdv | |
53 | 52 | adantr | |
54 | 50 53 | mpbird | |
55 | simpl | |
|
56 | 55 | ancomd | |
57 | 56 | adantl | |
58 | eqid | |
|
59 | 1 58 2 3 16 | islininds | |
60 | 57 59 | syl | |
61 | 21 54 60 | mpbir2and | |
62 | 18 61 | mpancom | |
63 | 62 | expcom | |
64 | 13 63 | jaoi | |
65 | 64 | expd | |
66 | 65 | com12 | |
67 | 66 | 3imp | |