| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lkrin.f |  | 
						
							| 2 |  | lkrin.k |  | 
						
							| 3 |  | lkrin.d |  | 
						
							| 4 |  | lkrin.p |  | 
						
							| 5 |  | lkrin.w |  | 
						
							| 6 |  | lkrin.e |  | 
						
							| 7 |  | lkrin.g |  | 
						
							| 8 |  | elin |  | 
						
							| 9 | 5 | adantr |  | 
						
							| 10 | 6 | adantr |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 1 2 | lkrcl |  | 
						
							| 14 | 9 10 11 13 | syl3anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 7 | adantr |  | 
						
							| 18 | 12 15 16 1 3 4 9 10 17 14 | ldualvaddval |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 15 19 1 2 | lkrf0 |  | 
						
							| 21 | 9 10 11 20 | syl3anc |  | 
						
							| 22 |  | simprr |  | 
						
							| 23 | 15 19 1 2 | lkrf0 |  | 
						
							| 24 | 9 17 22 23 | syl3anc |  | 
						
							| 25 | 21 24 | oveq12d |  | 
						
							| 26 | 15 | lmodring |  | 
						
							| 27 | 5 26 | syl |  | 
						
							| 28 |  | ringgrp |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 19 | grpidcl |  | 
						
							| 32 | 30 16 19 | grplid |  | 
						
							| 33 | 29 31 32 | syl2anc2 |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 18 25 34 | 3eqtrd |  | 
						
							| 36 | 1 3 4 5 6 7 | ldualvaddcl |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 12 15 19 1 2 | ellkr |  | 
						
							| 39 | 9 37 38 | syl2anc |  | 
						
							| 40 | 14 35 39 | mpbir2and |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 8 41 | biimtrid |  | 
						
							| 43 | 42 | ssrdv |  |