Metamath Proof Explorer


Theorem lkrin

Description: Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lkrin.f F=LFnlW
lkrin.k K=LKerW
lkrin.d D=LDualW
lkrin.p +˙=+D
lkrin.w φWLMod
lkrin.e φGF
lkrin.g φHF
Assertion lkrin φKGKHKG+˙H

Proof

Step Hyp Ref Expression
1 lkrin.f F=LFnlW
2 lkrin.k K=LKerW
3 lkrin.d D=LDualW
4 lkrin.p +˙=+D
5 lkrin.w φWLMod
6 lkrin.e φGF
7 lkrin.g φHF
8 elin vKGKHvKGvKH
9 5 adantr φvKGvKHWLMod
10 6 adantr φvKGvKHGF
11 simprl φvKGvKHvKG
12 eqid BaseW=BaseW
13 12 1 2 lkrcl WLModGFvKGvBaseW
14 9 10 11 13 syl3anc φvKGvKHvBaseW
15 eqid ScalarW=ScalarW
16 eqid +ScalarW=+ScalarW
17 7 adantr φvKGvKHHF
18 12 15 16 1 3 4 9 10 17 14 ldualvaddval φvKGvKHG+˙Hv=Gv+ScalarWHv
19 eqid 0ScalarW=0ScalarW
20 15 19 1 2 lkrf0 WLModGFvKGGv=0ScalarW
21 9 10 11 20 syl3anc φvKGvKHGv=0ScalarW
22 simprr φvKGvKHvKH
23 15 19 1 2 lkrf0 WLModHFvKHHv=0ScalarW
24 9 17 22 23 syl3anc φvKGvKHHv=0ScalarW
25 21 24 oveq12d φvKGvKHGv+ScalarWHv=0ScalarW+ScalarW0ScalarW
26 15 lmodring WLModScalarWRing
27 5 26 syl φScalarWRing
28 ringgrp ScalarWRingScalarWGrp
29 27 28 syl φScalarWGrp
30 eqid BaseScalarW=BaseScalarW
31 30 19 grpidcl ScalarWGrp0ScalarWBaseScalarW
32 30 16 19 grplid ScalarWGrp0ScalarWBaseScalarW0ScalarW+ScalarW0ScalarW=0ScalarW
33 29 31 32 syl2anc2 φ0ScalarW+ScalarW0ScalarW=0ScalarW
34 33 adantr φvKGvKH0ScalarW+ScalarW0ScalarW=0ScalarW
35 18 25 34 3eqtrd φvKGvKHG+˙Hv=0ScalarW
36 1 3 4 5 6 7 ldualvaddcl φG+˙HF
37 36 adantr φvKGvKHG+˙HF
38 12 15 19 1 2 ellkr WLModG+˙HFvKG+˙HvBaseWG+˙Hv=0ScalarW
39 9 37 38 syl2anc φvKGvKHvKG+˙HvBaseWG+˙Hv=0ScalarW
40 14 35 39 mpbir2and φvKGvKHvKG+˙H
41 40 ex φvKGvKHvKG+˙H
42 8 41 biimtrid φvKGKHvKG+˙H
43 42 ssrdv φKGKHKG+˙H