| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmcnp.3 |
|
| 2 |
|
lmcnp.4 |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4
|
cnpf |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
cnptop1 |
|
| 8 |
2 7
|
syl |
|
| 9 |
|
toptopon2 |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
nnuz |
|
| 12 |
|
1zzd |
|
| 13 |
10 11 12
|
lmbr2 |
|
| 14 |
1 13
|
mpbid |
|
| 15 |
14
|
simp1d |
|
| 16 |
8
|
uniexd |
|
| 17 |
|
cnex |
|
| 18 |
|
elpm2g |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
15 19
|
mpbid |
|
| 21 |
20
|
simpld |
|
| 22 |
|
fco |
|
| 23 |
6 21 22
|
syl2anc |
|
| 24 |
23
|
ffdmd |
|
| 25 |
23
|
fdmd |
|
| 26 |
20
|
simprd |
|
| 27 |
25 26
|
eqsstrd |
|
| 28 |
|
cnptop2 |
|
| 29 |
2 28
|
syl |
|
| 30 |
29
|
uniexd |
|
| 31 |
|
elpm2g |
|
| 32 |
30 17 31
|
sylancl |
|
| 33 |
24 27 32
|
mpbir2and |
|
| 34 |
14
|
simp2d |
|
| 35 |
6 34
|
ffvelcdmd |
|
| 36 |
14
|
simp3d |
|
| 37 |
36
|
adantr |
|
| 38 |
|
cnpimaex |
|
| 39 |
38
|
3expb |
|
| 40 |
2 39
|
sylan |
|
| 41 |
|
r19.29 |
|
| 42 |
|
pm3.45 |
|
| 43 |
42
|
imp |
|
| 44 |
43
|
reximi |
|
| 45 |
41 44
|
syl |
|
| 46 |
6
|
ad3antrrr |
|
| 47 |
46
|
ffnd |
|
| 48 |
|
simplrl |
|
| 49 |
|
elssuni |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
fnfvima |
|
| 52 |
51
|
3expia |
|
| 53 |
47 50 52
|
syl2anc |
|
| 54 |
21
|
ad2antrr |
|
| 55 |
|
fvco3 |
|
| 56 |
54 55
|
sylan |
|
| 57 |
56
|
eleq1d |
|
| 58 |
53 57
|
sylibrd |
|
| 59 |
|
simplrr |
|
| 60 |
59
|
sseld |
|
| 61 |
58 60
|
syld |
|
| 62 |
|
simpr |
|
| 63 |
25
|
ad3antrrr |
|
| 64 |
62 63
|
eleqtrrd |
|
| 65 |
61 64
|
jctild |
|
| 66 |
65
|
expimpd |
|
| 67 |
66
|
ralimdv |
|
| 68 |
67
|
reximdv |
|
| 69 |
68
|
expr |
|
| 70 |
69
|
impcomd |
|
| 71 |
70
|
rexlimdva |
|
| 72 |
45 71
|
syl5 |
|
| 73 |
37 40 72
|
mp2and |
|
| 74 |
73
|
expr |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
|
toptopon2 |
|
| 77 |
29 76
|
sylib |
|
| 78 |
77 11 12
|
lmbr2 |
|
| 79 |
33 35 75 78
|
mpbir3and |
|