Metamath Proof Explorer


Theorem lmhmeql

Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis lmhmeql.u U=LSubSpS
Assertion lmhmeql FSLMHomTGSLMHomTdomFGU

Proof

Step Hyp Ref Expression
1 lmhmeql.u U=LSubSpS
2 lmghm FSLMHomTFSGrpHomT
3 lmghm GSLMHomTGSGrpHomT
4 ghmeql FSGrpHomTGSGrpHomTdomFGSubGrpS
5 2 3 4 syl2an FSLMHomTGSLMHomTdomFGSubGrpS
6 fveq2 z=xSyFz=FxSy
7 fveq2 z=xSyGz=GxSy
8 6 7 eqeq12d z=xSyFz=GzFxSy=GxSy
9 lmhmlmod1 FSLMHomTSLMod
10 9 adantr FSLMHomTGSLMHomTSLMod
11 10 ad2antrr FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GySLMod
12 simplr FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxBaseScalarS
13 simprl FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyyBaseS
14 eqid BaseS=BaseS
15 eqid ScalarS=ScalarS
16 eqid S=S
17 eqid BaseScalarS=BaseScalarS
18 14 15 16 17 lmodvscl SLModxBaseScalarSyBaseSxSyBaseS
19 11 12 13 18 syl3anc FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxSyBaseS
20 oveq2 Fy=GyxTFy=xTGy
21 20 ad2antll FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxTFy=xTGy
22 simplll FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyFSLMHomT
23 eqid T=T
24 15 17 14 16 23 lmhmlin FSLMHomTxBaseScalarSyBaseSFxSy=xTFy
25 22 12 13 24 syl3anc FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyFxSy=xTFy
26 simpllr FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyGSLMHomT
27 15 17 14 16 23 lmhmlin GSLMHomTxBaseScalarSyBaseSGxSy=xTGy
28 26 12 13 27 syl3anc FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyGxSy=xTGy
29 21 25 28 3eqtr4d FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyFxSy=GxSy
30 8 19 29 elrabd FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxSyzBaseS|Fz=Gz
31 30 expr FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxSyzBaseS|Fz=Gz
32 31 ralrimiva FSLMHomTGSLMHomTxBaseScalarSyBaseSFy=GyxSyzBaseS|Fz=Gz
33 eqid BaseT=BaseT
34 14 33 lmhmf FSLMHomTF:BaseSBaseT
35 34 ffnd FSLMHomTFFnBaseS
36 14 33 lmhmf GSLMHomTG:BaseSBaseT
37 36 ffnd GSLMHomTGFnBaseS
38 fndmin FFnBaseSGFnBaseSdomFG=zBaseS|Fz=Gz
39 35 37 38 syl2an FSLMHomTGSLMHomTdomFG=zBaseS|Fz=Gz
40 39 adantr FSLMHomTGSLMHomTxBaseScalarSdomFG=zBaseS|Fz=Gz
41 eleq2 domFG=zBaseS|Fz=GzxSydomFGxSyzBaseS|Fz=Gz
42 41 raleqbi1dv domFG=zBaseS|Fz=GzydomFGxSydomFGyzBaseS|Fz=GzxSyzBaseS|Fz=Gz
43 fveq2 z=yFz=Fy
44 fveq2 z=yGz=Gy
45 43 44 eqeq12d z=yFz=GzFy=Gy
46 45 ralrab yzBaseS|Fz=GzxSyzBaseS|Fz=GzyBaseSFy=GyxSyzBaseS|Fz=Gz
47 42 46 bitrdi domFG=zBaseS|Fz=GzydomFGxSydomFGyBaseSFy=GyxSyzBaseS|Fz=Gz
48 40 47 syl FSLMHomTGSLMHomTxBaseScalarSydomFGxSydomFGyBaseSFy=GyxSyzBaseS|Fz=Gz
49 32 48 mpbird FSLMHomTGSLMHomTxBaseScalarSydomFGxSydomFG
50 49 ralrimiva FSLMHomTGSLMHomTxBaseScalarSydomFGxSydomFG
51 15 17 14 16 1 islss4 SLModdomFGUdomFGSubGrpSxBaseScalarSydomFGxSydomFG
52 10 51 syl FSLMHomTGSLMHomTdomFGUdomFGSubGrpSxBaseScalarSydomFGxSydomFG
53 5 50 52 mpbir2and FSLMHomTGSLMHomTdomFGU