Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lmhmeql.u | |
|
Assertion | lmhmeql | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmeql.u | |
|
2 | lmghm | |
|
3 | lmghm | |
|
4 | ghmeql | |
|
5 | 2 3 4 | syl2an | |
6 | fveq2 | |
|
7 | fveq2 | |
|
8 | 6 7 | eqeq12d | |
9 | lmhmlmod1 | |
|
10 | 9 | adantr | |
11 | 10 | ad2antrr | |
12 | simplr | |
|
13 | simprl | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 14 15 16 17 | lmodvscl | |
19 | 11 12 13 18 | syl3anc | |
20 | oveq2 | |
|
21 | 20 | ad2antll | |
22 | simplll | |
|
23 | eqid | |
|
24 | 15 17 14 16 23 | lmhmlin | |
25 | 22 12 13 24 | syl3anc | |
26 | simpllr | |
|
27 | 15 17 14 16 23 | lmhmlin | |
28 | 26 12 13 27 | syl3anc | |
29 | 21 25 28 | 3eqtr4d | |
30 | 8 19 29 | elrabd | |
31 | 30 | expr | |
32 | 31 | ralrimiva | |
33 | eqid | |
|
34 | 14 33 | lmhmf | |
35 | 34 | ffnd | |
36 | 14 33 | lmhmf | |
37 | 36 | ffnd | |
38 | fndmin | |
|
39 | 35 37 38 | syl2an | |
40 | 39 | adantr | |
41 | eleq2 | |
|
42 | 41 | raleqbi1dv | |
43 | fveq2 | |
|
44 | fveq2 | |
|
45 | 43 44 | eqeq12d | |
46 | 45 | ralrab | |
47 | 42 46 | bitrdi | |
48 | 40 47 | syl | |
49 | 32 48 | mpbird | |
50 | 49 | ralrimiva | |
51 | 15 17 14 16 1 | islss4 | |
52 | 10 51 | syl | |
53 | 5 50 52 | mpbir2and | |