Metamath Proof Explorer


Theorem lmnn

Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmnn.2 J=MetOpenD
lmnn.3 φD∞MetX
lmnn.4 φPX
lmnn.5 φF:X
lmnn.6 φkFkDP<1k
Assertion lmnn φFtJP

Proof

Step Hyp Ref Expression
1 lmnn.2 J=MetOpenD
2 lmnn.3 φD∞MetX
3 lmnn.4 φPX
4 lmnn.5 φF:X
5 lmnn.6 φkFkDP<1k
6 rpreccl x+1x+
7 6 adantl φx+1x+
8 7 rpred φx+1x
9 7 rpge0d φx+01x
10 flge0nn0 1x01x1x0
11 8 9 10 syl2anc φx+1x0
12 nn0p1nn 1x01x+1
13 11 12 syl φx+1x+1
14 2 ad2antrr φx+k1x+1D∞MetX
15 4 ad2antrr φx+k1x+1F:X
16 eluznn 1x+1k1x+1k
17 13 16 sylan φx+k1x+1k
18 15 17 ffvelcdmd φx+k1x+1FkX
19 3 ad2antrr φx+k1x+1PX
20 xmetcl D∞MetXFkXPXFkDP*
21 14 18 19 20 syl3anc φx+k1x+1FkDP*
22 17 nnrecred φx+k1x+11k
23 22 rexrd φx+k1x+11k*
24 rpxr x+x*
25 24 ad2antlr φx+k1x+1x*
26 5 adantlr φx+kFkDP<1k
27 17 26 syldan φx+k1x+1FkDP<1k
28 8 adantr φx+k1x+11x
29 13 nnred φx+1x+1
30 29 adantr φx+k1x+11x+1
31 17 nnred φx+k1x+1k
32 flltp1 1x1x<1x+1
33 28 32 syl φx+k1x+11x<1x+1
34 eluzle k1x+11x+1k
35 34 adantl φx+k1x+11x+1k
36 28 30 31 33 35 ltletrd φx+k1x+11x<k
37 simplr φx+k1x+1x+
38 rpregt0 x+x0<x
39 nnrp kk+
40 39 rpregt0d kk0<k
41 ltrec1 x0<xk0<k1x<k1k<x
42 38 40 41 syl2an x+k1x<k1k<x
43 37 17 42 syl2anc φx+k1x+11x<k1k<x
44 36 43 mpbid φx+k1x+11k<x
45 21 23 25 27 44 xrlttrd φx+k1x+1FkDP<x
46 45 ralrimiva φx+k1x+1FkDP<x
47 fveq2 j=1x+1j=1x+1
48 47 raleqdv j=1x+1kjFkDP<xk1x+1FkDP<x
49 48 rspcev 1x+1k1x+1FkDP<xjkjFkDP<x
50 13 46 49 syl2anc φx+jkjFkDP<x
51 50 ralrimiva φx+jkjFkDP<x
52 nnuz =1
53 1zzd φ1
54 eqidd φkFk=Fk
55 1 2 52 53 54 4 lmmbrf φFtJPPXx+jkjFkDP<x
56 3 51 55 mpbir2and φFtJP