Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmnn.2 | |
|
lmnn.3 | |
||
lmnn.4 | |
||
lmnn.5 | |
||
lmnn.6 | |
||
Assertion | lmnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmnn.2 | |
|
2 | lmnn.3 | |
|
3 | lmnn.4 | |
|
4 | lmnn.5 | |
|
5 | lmnn.6 | |
|
6 | rpreccl | |
|
7 | 6 | adantl | |
8 | 7 | rpred | |
9 | 7 | rpge0d | |
10 | flge0nn0 | |
|
11 | 8 9 10 | syl2anc | |
12 | nn0p1nn | |
|
13 | 11 12 | syl | |
14 | 2 | ad2antrr | |
15 | 4 | ad2antrr | |
16 | eluznn | |
|
17 | 13 16 | sylan | |
18 | 15 17 | ffvelcdmd | |
19 | 3 | ad2antrr | |
20 | xmetcl | |
|
21 | 14 18 19 20 | syl3anc | |
22 | 17 | nnrecred | |
23 | 22 | rexrd | |
24 | rpxr | |
|
25 | 24 | ad2antlr | |
26 | 5 | adantlr | |
27 | 17 26 | syldan | |
28 | 8 | adantr | |
29 | 13 | nnred | |
30 | 29 | adantr | |
31 | 17 | nnred | |
32 | flltp1 | |
|
33 | 28 32 | syl | |
34 | eluzle | |
|
35 | 34 | adantl | |
36 | 28 30 31 33 35 | ltletrd | |
37 | simplr | |
|
38 | rpregt0 | |
|
39 | nnrp | |
|
40 | 39 | rpregt0d | |
41 | ltrec1 | |
|
42 | 38 40 41 | syl2an | |
43 | 37 17 42 | syl2anc | |
44 | 36 43 | mpbid | |
45 | 21 23 25 27 44 | xrlttrd | |
46 | 45 | ralrimiva | |
47 | fveq2 | |
|
48 | 47 | raleqdv | |
49 | 48 | rspcev | |
50 | 13 46 49 | syl2anc | |
51 | 50 | ralrimiva | |
52 | nnuz | |
|
53 | 1zzd | |
|
54 | eqidd | |
|
55 | 1 2 52 53 54 4 | lmmbrf | |
56 | 3 51 55 | mpbir2and | |