Metamath Proof Explorer


Theorem lmod0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0vs.v V=BaseW
lmod0vs.f F=ScalarW
lmod0vs.s ·˙=W
lmod0vs.o O=0F
lmod0vs.z 0˙=0W
Assertion lmod0vs WLModXVO·˙X=0˙

Proof

Step Hyp Ref Expression
1 lmod0vs.v V=BaseW
2 lmod0vs.f F=ScalarW
3 lmod0vs.s ·˙=W
4 lmod0vs.o O=0F
5 lmod0vs.z 0˙=0W
6 simpl WLModXVWLMod
7 2 lmodring WLModFRing
8 7 adantr WLModXVFRing
9 eqid BaseF=BaseF
10 9 4 ring0cl FRingOBaseF
11 8 10 syl WLModXVOBaseF
12 simpr WLModXVXV
13 eqid +W=+W
14 eqid +F=+F
15 1 13 2 3 9 14 lmodvsdir WLModOBaseFOBaseFXVO+FO·˙X=O·˙X+WO·˙X
16 6 11 11 12 15 syl13anc WLModXVO+FO·˙X=O·˙X+WO·˙X
17 ringgrp FRingFGrp
18 8 17 syl WLModXVFGrp
19 9 14 4 grplid FGrpOBaseFO+FO=O
20 18 11 19 syl2anc WLModXVO+FO=O
21 20 oveq1d WLModXVO+FO·˙X=O·˙X
22 16 21 eqtr3d WLModXVO·˙X+WO·˙X=O·˙X
23 1 2 3 9 lmodvscl WLModOBaseFXVO·˙XV
24 6 11 12 23 syl3anc WLModXVO·˙XV
25 1 13 5 lmod0vid WLModO·˙XVO·˙X+WO·˙X=O·˙X0˙=O·˙X
26 24 25 syldan WLModXVO·˙X+WO·˙X=O·˙X0˙=O·˙X
27 22 26 mpbid WLModXV0˙=O·˙X
28 27 eqcomd WLModXVO·˙X=0˙