Metamath Proof Explorer


Theorem lrrecfr

Description: Now we show that R is founded over No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
Assertion lrrecfr RFrNo

Proof

Step Hyp Ref Expression
1 lrrec.1 Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
2 df-fr RFrNoaaNoapaqa¬qRp
3 bdayfun Funbday
4 imassrn bdayaranbday
5 bdayrn ranbday=On
6 4 5 sseqtri bdayaOn
7 fvex bdayqV
8 7 jctr qaqabdayqV
9 8 eximi qqaqqabdayqV
10 n0 aqqa
11 df-rex qabdayqVqqabdayqV
12 9 10 11 3imtr4i aqabdayqV
13 isset bdayqVpp=bdayq
14 eqcom p=bdayqbdayq=p
15 14 exbii pp=bdayqpbdayq=p
16 13 15 bitri bdayqVpbdayq=p
17 16 rexbii qabdayqVqapbdayq=p
18 rexcom4 qapbdayq=ppqabdayq=p
19 17 18 bitri qabdayqVpqabdayq=p
20 12 19 sylib apqabdayq=p
21 20 adantl aNoapqabdayq=p
22 bdayfn bdayFnNo
23 fvelimab bdayFnNoaNopbdayaqabdayq=p
24 22 23 mpan aNopbdayaqabdayq=p
25 24 adantr aNoapbdayaqabdayq=p
26 25 exbidv aNoappbdayapqabdayq=p
27 21 26 mpbird aNoappbdaya
28 n0 bdayappbdaya
29 27 28 sylibr aNoabdaya
30 onint bdayaOnbdayabdayabdaya
31 6 29 30 sylancr aNoabdayabdaya
32 fvelima Funbdaybdayabdayapabdayp=bdaya
33 3 31 32 sylancr aNoapabdayp=bdaya
34 fnfvima bdayFnNoaNoqabdayqbdaya
35 22 34 mp3an1 aNoqabdayqbdaya
36 35 adantlr aNoaqabdayqbdaya
37 onnmin bdayaOnbdayqbdaya¬bdayqbdaya
38 6 36 37 sylancr aNoaqa¬bdayqbdaya
39 38 ralrimiva aNoaqa¬bdayqbdaya
40 eleq2 bdayp=bdayabdayqbdaypbdayqbdaya
41 40 notbid bdayp=bdaya¬bdayqbdayp¬bdayqbdaya
42 41 ralbidv bdayp=bdayaqa¬bdayqbdaypqa¬bdayqbdaya
43 39 42 syl5ibrcom aNoabdayp=bdayaqa¬bdayqbdayp
44 43 reximdv aNoapabdayp=bdayapaqa¬bdayqbdayp
45 33 44 mpd aNoapaqa¬bdayqbdayp
46 simpll aNoapaqaaNo
47 simprr aNoapaqaqa
48 46 47 sseldd aNoapaqaqNo
49 simprl aNoapaqapa
50 46 49 sseldd aNoapaqapNo
51 1 lrrecval2 qNopNoqRpbdayqbdayp
52 48 50 51 syl2anc aNoapaqaqRpbdayqbdayp
53 52 notbid aNoapaqa¬qRp¬bdayqbdayp
54 53 anassrs aNoapaqa¬qRp¬bdayqbdayp
55 54 ralbidva aNoapaqa¬qRpqa¬bdayqbdayp
56 55 rexbidva aNoapaqa¬qRppaqa¬bdayqbdayp
57 45 56 mpbird aNoapaqa¬qRp
58 2 57 mpgbir RFrNo