Description: Now we show that R is founded over No . (Contributed by Scott Fenton, 19-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lrrec.1 | No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |- | |
Assertion | lrrecfr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrrec.1 | Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |- | |
2 | df-fr | |
|
3 | bdayfun | |
|
4 | imassrn | |
|
5 | bdayrn | |
|
6 | 4 5 | sseqtri | |
7 | fvex | |
|
8 | 7 | jctr | |
9 | 8 | eximi | |
10 | n0 | |
|
11 | df-rex | |
|
12 | 9 10 11 | 3imtr4i | |
13 | isset | |
|
14 | eqcom | |
|
15 | 14 | exbii | |
16 | 13 15 | bitri | |
17 | 16 | rexbii | |
18 | rexcom4 | |
|
19 | 17 18 | bitri | |
20 | 12 19 | sylib | |
21 | 20 | adantl | |
22 | bdayfn | |
|
23 | fvelimab | |
|
24 | 22 23 | mpan | |
25 | 24 | adantr | |
26 | 25 | exbidv | |
27 | 21 26 | mpbird | |
28 | n0 | |
|
29 | 27 28 | sylibr | |
30 | onint | |
|
31 | 6 29 30 | sylancr | |
32 | fvelima | |
|
33 | 3 31 32 | sylancr | |
34 | fnfvima | |
|
35 | 22 34 | mp3an1 | |
36 | 35 | adantlr | |
37 | onnmin | |
|
38 | 6 36 37 | sylancr | |
39 | 38 | ralrimiva | |
40 | eleq2 | |
|
41 | 40 | notbid | |
42 | 41 | ralbidv | |
43 | 39 42 | syl5ibrcom | |
44 | 43 | reximdv | |
45 | 33 44 | mpd | |
46 | simpll | |
|
47 | simprr | |
|
48 | 46 47 | sseldd | |
49 | simprl | |
|
50 | 46 49 | sseldd | |
51 | 1 | lrrecval2 | |
52 | 48 50 51 | syl2anc | |
53 | 52 | notbid | |
54 | 53 | anassrs | |
55 | 54 | ralbidva | |
56 | 55 | rexbidva | |
57 | 45 56 | mpbird | |
58 | 2 57 | mpgbir | |