Metamath Proof Explorer


Theorem lsatcv0

Description: An atom covers the zero subspace. ( atcv0 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lsatcv0.o 0˙=0W
lsatcv0.a A=LSAtomsW
lsatcv0.c C=LW
lsatcv0.w φWLVec
lsatcv0.q φQA
Assertion lsatcv0 φ0˙CQ

Proof

Step Hyp Ref Expression
1 lsatcv0.o 0˙=0W
2 lsatcv0.a A=LSAtomsW
3 lsatcv0.c C=LW
4 lsatcv0.w φWLVec
5 lsatcv0.q φQA
6 lveclmod WLVecWLMod
7 4 6 syl φWLMod
8 eqid LSubSpW=LSubSpW
9 8 2 7 5 lsatlssel φQLSubSpW
10 1 8 lss0ss WLModQLSubSpW0˙Q
11 7 9 10 syl2anc φ0˙Q
12 1 2 7 5 lsatn0 φQ0˙
13 12 necomd φ0˙Q
14 df-pss 0˙Q0˙Q0˙Q
15 11 13 14 sylanbrc φ0˙Q
16 eqid BaseW=BaseW
17 eqid LSpanW=LSpanW
18 16 17 1 2 islsat WLModQAxBaseW0˙Q=LSpanWx
19 7 18 syl φQAxBaseW0˙Q=LSpanWx
20 5 19 mpbid φxBaseW0˙Q=LSpanWx
21 4 adantr φxBaseW0˙WLVec
22 eldifi xBaseW0˙xBaseW
23 22 adantl φxBaseW0˙xBaseW
24 16 1 8 17 21 23 lspsncv0 φxBaseW0˙¬sLSubSpW0˙ssLSpanWx
25 24 ex φxBaseW0˙¬sLSubSpW0˙ssLSpanWx
26 psseq2 Q=LSpanWxsQsLSpanWx
27 26 anbi2d Q=LSpanWx0˙ssQ0˙ssLSpanWx
28 27 rexbidv Q=LSpanWxsLSubSpW0˙ssQsLSubSpW0˙ssLSpanWx
29 28 notbid Q=LSpanWx¬sLSubSpW0˙ssQ¬sLSubSpW0˙ssLSpanWx
30 29 biimprcd ¬sLSubSpW0˙ssLSpanWxQ=LSpanWx¬sLSubSpW0˙ssQ
31 25 30 syl6 φxBaseW0˙Q=LSpanWx¬sLSubSpW0˙ssQ
32 31 rexlimdv φxBaseW0˙Q=LSpanWx¬sLSubSpW0˙ssQ
33 20 32 mpd φ¬sLSubSpW0˙ssQ
34 1 8 lsssn0 WLMod0˙LSubSpW
35 7 34 syl φ0˙LSubSpW
36 8 3 4 35 9 lcvbr φ0˙CQ0˙Q¬sLSubSpW0˙ssQ
37 15 33 36 mpbir2and φ0˙CQ