Metamath Proof Explorer


Theorem lsmelval2

Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses lsmelval2.v V=BaseW
lsmelval2.s S=LSubSpW
lsmelval2.p ˙=LSSumW
lsmelval2.n N=LSpanW
lsmelval2.w φWLMod
lsmelval2.t φTS
lsmelval2.u φUS
Assertion lsmelval2 φXT˙UXVyTzUNXNy˙Nz

Proof

Step Hyp Ref Expression
1 lsmelval2.v V=BaseW
2 lsmelval2.s S=LSubSpW
3 lsmelval2.p ˙=LSSumW
4 lsmelval2.n N=LSpanW
5 lsmelval2.w φWLMod
6 lsmelval2.t φTS
7 lsmelval2.u φUS
8 2 lsssubg WLModTSTSubGrpW
9 5 6 8 syl2anc φTSubGrpW
10 2 lsssubg WLModUSUSubGrpW
11 5 7 10 syl2anc φUSubGrpW
12 eqid +W=+W
13 12 3 lsmelval TSubGrpWUSubGrpWXT˙UyTzUX=y+Wz
14 9 11 13 syl2anc φXT˙UyTzUX=y+Wz
15 5 adantr φyTzUWLMod
16 6 adantr φyTzUTS
17 simprl φyTzUyT
18 1 2 lssel TSyTyV
19 16 17 18 syl2anc φyTzUyV
20 1 2 4 lspsncl WLModyVNyS
21 15 19 20 syl2anc φyTzUNyS
22 2 lsssubg WLModNySNySubGrpW
23 15 21 22 syl2anc φyTzUNySubGrpW
24 7 adantr φyTzUUS
25 simprr φyTzUzU
26 1 2 lssel USzUzV
27 24 25 26 syl2anc φyTzUzV
28 1 2 4 lspsncl WLModzVNzS
29 15 27 28 syl2anc φyTzUNzS
30 2 lsssubg WLModNzSNzSubGrpW
31 15 29 30 syl2anc φyTzUNzSubGrpW
32 1 4 lspsnid WLModyVyNy
33 15 19 32 syl2anc φyTzUyNy
34 1 4 lspsnid WLModzVzNz
35 15 27 34 syl2anc φyTzUzNz
36 12 3 lsmelvali NySubGrpWNzSubGrpWyNyzNzy+WzNy˙Nz
37 23 31 33 35 36 syl22anc φyTzUy+WzNy˙Nz
38 eleq1a y+WzNy˙NzX=y+WzXNy˙Nz
39 37 38 syl φyTzUX=y+WzXNy˙Nz
40 2 3 lsmcl WLModNySNzSNy˙NzS
41 15 21 29 40 syl3anc φyTzUNy˙NzS
42 1 2 4 15 41 lspsnel6 φyTzUXNy˙NzXVNXNy˙Nz
43 39 42 sylibd φyTzUX=y+WzXVNXNy˙Nz
44 43 reximdvva φyTzUX=y+WzyTzUXVNXNy˙Nz
45 14 44 sylbid φXT˙UyTzUXVNXNy˙Nz
46 9 adantr φyTzUTSubGrpW
47 2 4 15 16 17 lspsnel5a φyTzUNyT
48 3 lsmless1 TSubGrpWNzSubGrpWNyTNy˙NzT˙Nz
49 46 31 47 48 syl3anc φyTzUNy˙NzT˙Nz
50 11 adantr φyTzUUSubGrpW
51 2 4 15 24 25 lspsnel5a φyTzUNzU
52 3 lsmless2 TSubGrpWUSubGrpWNzUT˙NzT˙U
53 46 50 51 52 syl3anc φyTzUT˙NzT˙U
54 49 53 sstrd φyTzUNy˙NzT˙U
55 54 sseld φyTzUXNy˙NzXT˙U
56 42 55 sylbird φyTzUXVNXNy˙NzXT˙U
57 56 rexlimdvva φyTzUXVNXNy˙NzXT˙U
58 45 57 impbid φXT˙UyTzUXVNXNy˙Nz
59 r19.42v zUXVNXNy˙NzXVzUNXNy˙Nz
60 59 rexbii yTzUXVNXNy˙NzyTXVzUNXNy˙Nz
61 r19.42v yTXVzUNXNy˙NzXVyTzUNXNy˙Nz
62 60 61 bitri yTzUXVNXNy˙NzXVyTzUNXNy˙Nz
63 58 62 bitrdi φXT˙UXVyTzUNXNy˙Nz