| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmelval2.v |
|
| 2 |
|
lsmelval2.s |
|
| 3 |
|
lsmelval2.p |
|
| 4 |
|
lsmelval2.n |
|
| 5 |
|
lsmelval2.w |
|
| 6 |
|
lsmelval2.t |
|
| 7 |
|
lsmelval2.u |
|
| 8 |
2
|
lsssubg |
|
| 9 |
5 6 8
|
syl2anc |
|
| 10 |
2
|
lsssubg |
|
| 11 |
5 7 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
12 3
|
lsmelval |
|
| 14 |
9 11 13
|
syl2anc |
|
| 15 |
5
|
adantr |
|
| 16 |
6
|
adantr |
|
| 17 |
|
simprl |
|
| 18 |
1 2
|
lssel |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
1 2 4
|
lspsncl |
|
| 21 |
15 19 20
|
syl2anc |
|
| 22 |
2
|
lsssubg |
|
| 23 |
15 21 22
|
syl2anc |
|
| 24 |
7
|
adantr |
|
| 25 |
|
simprr |
|
| 26 |
1 2
|
lssel |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
1 2 4
|
lspsncl |
|
| 29 |
15 27 28
|
syl2anc |
|
| 30 |
2
|
lsssubg |
|
| 31 |
15 29 30
|
syl2anc |
|
| 32 |
1 4
|
lspsnid |
|
| 33 |
15 19 32
|
syl2anc |
|
| 34 |
1 4
|
lspsnid |
|
| 35 |
15 27 34
|
syl2anc |
|
| 36 |
12 3
|
lsmelvali |
|
| 37 |
23 31 33 35 36
|
syl22anc |
|
| 38 |
|
eleq1a |
|
| 39 |
37 38
|
syl |
|
| 40 |
2 3
|
lsmcl |
|
| 41 |
15 21 29 40
|
syl3anc |
|
| 42 |
1 2 4 15 41
|
ellspsn6 |
|
| 43 |
39 42
|
sylibd |
|
| 44 |
43
|
reximdvva |
|
| 45 |
14 44
|
sylbid |
|
| 46 |
9
|
adantr |
|
| 47 |
2 4 15 16 17
|
ellspsn5 |
|
| 48 |
3
|
lsmless1 |
|
| 49 |
46 31 47 48
|
syl3anc |
|
| 50 |
11
|
adantr |
|
| 51 |
2 4 15 24 25
|
ellspsn5 |
|
| 52 |
3
|
lsmless2 |
|
| 53 |
46 50 51 52
|
syl3anc |
|
| 54 |
49 53
|
sstrd |
|
| 55 |
54
|
sseld |
|
| 56 |
42 55
|
sylbird |
|
| 57 |
56
|
rexlimdvva |
|
| 58 |
45 57
|
impbid |
|
| 59 |
|
r19.42v |
|
| 60 |
59
|
rexbii |
|
| 61 |
|
r19.42v |
|
| 62 |
60 61
|
bitri |
|
| 63 |
58 62
|
bitrdi |
|