Metamath Proof Explorer


Theorem lspextmo

Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses lspextmo.b B=BaseS
lspextmo.k K=LSpanS
Assertion lspextmo XBKX=B*gSLMHomTgX=F

Proof

Step Hyp Ref Expression
1 lspextmo.b B=BaseS
2 lspextmo.k K=LSpanS
3 eqtr3 gX=FhX=FgX=hX
4 inss1 ghg
5 dmss ghgdomghdomg
6 4 5 ax-mp domghdomg
7 eqid BaseT=BaseT
8 1 7 lmhmf gSLMHomTg:BBaseT
9 8 ad2antrl XBKX=BgSLMHomThSLMHomTg:BBaseT
10 9 ffnd XBKX=BgSLMHomThSLMHomTgFnB
11 10 adantrr XBKX=BgSLMHomThSLMHomTXdomghgFnB
12 11 fndmd XBKX=BgSLMHomThSLMHomTXdomghdomg=B
13 6 12 sseqtrid XBKX=BgSLMHomThSLMHomTXdomghdomghB
14 simplr XBKX=BgSLMHomThSLMHomTXdomghKX=B
15 lmhmlmod1 gSLMHomTSLMod
16 15 adantr gSLMHomThSLMHomTSLMod
17 16 ad2antrl XBKX=BgSLMHomThSLMHomTXdomghSLMod
18 eqid LSubSpS=LSubSpS
19 18 lmhmeql gSLMHomThSLMHomTdomghLSubSpS
20 19 ad2antrl XBKX=BgSLMHomThSLMHomTXdomghdomghLSubSpS
21 simprr XBKX=BgSLMHomThSLMHomTXdomghXdomgh
22 18 2 lspssp SLModdomghLSubSpSXdomghKXdomgh
23 17 20 21 22 syl3anc XBKX=BgSLMHomThSLMHomTXdomghKXdomgh
24 14 23 eqsstrrd XBKX=BgSLMHomThSLMHomTXdomghBdomgh
25 13 24 eqssd XBKX=BgSLMHomThSLMHomTXdomghdomgh=B
26 25 expr XBKX=BgSLMHomThSLMHomTXdomghdomgh=B
27 simprr XBKX=BgSLMHomThSLMHomThSLMHomT
28 1 7 lmhmf hSLMHomTh:BBaseT
29 ffn h:BBaseThFnB
30 27 28 29 3syl XBKX=BgSLMHomThSLMHomThFnB
31 simpll XBKX=BgSLMHomThSLMHomTXB
32 fnreseql gFnBhFnBXBgX=hXXdomgh
33 10 30 31 32 syl3anc XBKX=BgSLMHomThSLMHomTgX=hXXdomgh
34 fneqeql gFnBhFnBg=hdomgh=B
35 10 30 34 syl2anc XBKX=BgSLMHomThSLMHomTg=hdomgh=B
36 26 33 35 3imtr4d XBKX=BgSLMHomThSLMHomTgX=hXg=h
37 3 36 syl5 XBKX=BgSLMHomThSLMHomTgX=FhX=Fg=h
38 37 ralrimivva XBKX=BgSLMHomThSLMHomTgX=FhX=Fg=h
39 reseq1 g=hgX=hX
40 39 eqeq1d g=hgX=FhX=F
41 40 rmo4 *gSLMHomTgX=FgSLMHomThSLMHomTgX=FhX=Fg=h
42 38 41 sylibr XBKX=B*gSLMHomTgX=F