Database
BASIC LINEAR ALGEBRA
Polynomial matrices
Constant polynomial matrices
m2cpminvid2lem
Next ⟩
m2cpminvid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
m2cpminvid2lem
Description:
Lemma for
m2cpminvid2
.
(Contributed by
AV
, 12-Nov-2019)
(Revised by
AV
, 14-Dec-2019)
Ref
Expression
Hypotheses
m2cpminvid2lem.s
⊢
S
=
N
ConstPolyMat
R
m2cpminvid2lem.p
⊢
P
=
Poly
1
R
Assertion
m2cpminvid2lem
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
Proof
Step
Hyp
Ref
Expression
1
m2cpminvid2lem.s
⊢
S
=
N
ConstPolyMat
R
2
m2cpminvid2lem.p
⊢
P
=
Poly
1
R
3
eqid
⊢
N
Mat
P
=
N
Mat
P
4
eqid
⊢
Base
N
Mat
P
=
Base
N
Mat
P
5
1
2
3
4
cpmatelimp
⊢
N
∈
Fin
∧
R
∈
Ring
→
M
∈
S
→
M
∈
Base
N
Mat
P
∧
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
6
5
3impia
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
→
M
∈
Base
N
Mat
P
∧
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
7
6
simprd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
8
7
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
9
fvoveq1
⊢
i
=
x
→
coe
1
i
M
j
=
coe
1
x
M
j
10
9
fveq1d
⊢
i
=
x
→
coe
1
i
M
j
k
=
coe
1
x
M
j
k
11
10
eqeq1d
⊢
i
=
x
→
coe
1
i
M
j
k
=
0
R
↔
coe
1
x
M
j
k
=
0
R
12
11
ralbidv
⊢
i
=
x
→
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
↔
∀
k
∈
ℕ
coe
1
x
M
j
k
=
0
R
13
oveq2
⊢
j
=
y
→
x
M
j
=
x
M
y
14
13
fveq2d
⊢
j
=
y
→
coe
1
x
M
j
=
coe
1
x
M
y
15
14
fveq1d
⊢
j
=
y
→
coe
1
x
M
j
k
=
coe
1
x
M
y
k
16
15
eqeq1d
⊢
j
=
y
→
coe
1
x
M
j
k
=
0
R
↔
coe
1
x
M
y
k
=
0
R
17
16
ralbidv
⊢
j
=
y
→
∀
k
∈
ℕ
coe
1
x
M
j
k
=
0
R
↔
∀
k
∈
ℕ
coe
1
x
M
y
k
=
0
R
18
12
17
rspc2v
⊢
x
∈
N
∧
y
∈
N
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
→
∀
k
∈
ℕ
coe
1
x
M
y
k
=
0
R
19
18
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
→
∀
k
∈
ℕ
coe
1
x
M
y
k
=
0
R
20
fveqeq2
⊢
k
=
n
→
coe
1
x
M
y
k
=
0
R
↔
coe
1
x
M
y
n
=
0
R
21
20
cbvralvw
⊢
∀
k
∈
ℕ
coe
1
x
M
y
k
=
0
R
↔
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
22
simpl2
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
R
∈
Ring
23
eqid
⊢
Base
P
=
Base
P
24
simprl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
x
∈
N
25
simprr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
y
∈
N
26
1
2
3
4
cpmatpmat
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
→
M
∈
Base
N
Mat
P
27
26
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
M
∈
Base
N
Mat
P
28
3
23
4
24
25
27
matecld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
x
M
y
∈
Base
P
29
0nn0
⊢
0
∈
ℕ
0
30
eqid
⊢
coe
1
x
M
y
=
coe
1
x
M
y
31
eqid
⊢
Base
R
=
Base
R
32
30
23
2
31
coe1fvalcl
⊢
x
M
y
∈
Base
P
∧
0
∈
ℕ
0
→
coe
1
x
M
y
0
∈
Base
R
33
28
29
32
sylancl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
coe
1
x
M
y
0
∈
Base
R
34
22
33
jca
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
35
34
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
36
eqid
⊢
algSc
P
=
algSc
P
37
eqid
⊢
0
R
=
0
R
38
2
36
31
37
coe1scl
⊢
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
→
coe
1
algSc
P
coe
1
x
M
y
0
=
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
39
35
38
syl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
coe
1
algSc
P
coe
1
x
M
y
0
=
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
40
39
fveq1d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
n
41
eqidd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
=
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
42
eqeq1
⊢
l
=
n
→
l
=
0
↔
n
=
0
43
42
ifbid
⊢
l
=
n
→
if
l
=
0
coe
1
x
M
y
0
0
R
=
if
n
=
0
coe
1
x
M
y
0
0
R
44
43
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
∧
l
=
n
→
if
l
=
0
coe
1
x
M
y
0
0
R
=
if
n
=
0
coe
1
x
M
y
0
0
R
45
nnnn0
⊢
n
∈
ℕ
→
n
∈
ℕ
0
46
45
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
n
∈
ℕ
0
47
fvex
⊢
coe
1
x
M
y
0
∈
V
48
fvex
⊢
0
R
∈
V
49
47
48
ifex
⊢
if
n
=
0
coe
1
x
M
y
0
0
R
∈
V
50
49
a1i
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
if
n
=
0
coe
1
x
M
y
0
0
R
∈
V
51
41
44
46
50
fvmptd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
l
∈
ℕ
0
⟼
if
l
=
0
coe
1
x
M
y
0
0
R
n
=
if
n
=
0
coe
1
x
M
y
0
0
R
52
nnne0
⊢
n
∈
ℕ
→
n
≠
0
53
52
neneqd
⊢
n
∈
ℕ
→
¬
n
=
0
54
53
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
¬
n
=
0
55
54
iffalsed
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
if
n
=
0
coe
1
x
M
y
0
0
R
=
0
R
56
40
51
55
3eqtrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
0
R
57
eqcom
⊢
coe
1
x
M
y
n
=
0
R
↔
0
R
=
coe
1
x
M
y
n
58
57
biimpi
⊢
coe
1
x
M
y
n
=
0
R
→
0
R
=
coe
1
x
M
y
n
59
56
58
sylan9eq
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
∧
coe
1
x
M
y
n
=
0
R
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
60
59
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
n
∈
ℕ
→
coe
1
x
M
y
n
=
0
R
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
61
60
ralimdva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
62
61
imp
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
63
34
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
64
2
36
31
ply1sclid
⊢
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
→
coe
1
x
M
y
0
=
coe
1
algSc
P
coe
1
x
M
y
0
0
65
64
eqcomd
⊢
R
∈
Ring
∧
coe
1
x
M
y
0
∈
Base
R
→
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
66
63
65
syl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
67
62
66
jca
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
∧
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
68
67
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
coe
1
x
M
y
n
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
69
21
68
biimtrid
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
k
∈
ℕ
coe
1
x
M
y
k
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
70
19
69
syld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
i
M
j
k
=
0
R
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
71
8
70
mpd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
72
c0ex
⊢
0
∈
V
73
fveq2
⊢
n
=
0
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
algSc
P
coe
1
x
M
y
0
0
74
fveq2
⊢
n
=
0
→
coe
1
x
M
y
n
=
coe
1
x
M
y
0
75
73
74
eqeq12d
⊢
n
=
0
→
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
↔
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
76
75
ralunsn
⊢
0
∈
V
→
∀
n
∈
ℕ
∪
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
↔
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
77
72
76
mp1i
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
∪
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
↔
∀
n
∈
ℕ
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
∧
coe
1
algSc
P
coe
1
x
M
y
0
0
=
coe
1
x
M
y
0
78
71
77
mpbird
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
∪
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
79
df-n0
⊢
ℕ
0
=
ℕ
∪
0
80
79
raleqi
⊢
∀
n
∈
ℕ
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
↔
∀
n
∈
ℕ
∪
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n
81
78
80
sylibr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
M
∈
S
∧
x
∈
N
∧
y
∈
N
→
∀
n
∈
ℕ
0
coe
1
algSc
P
coe
1
x
M
y
0
n
=
coe
1
x
M
y
n