Metamath Proof Explorer


Theorem m2cpminvid2lem

Description: Lemma for m2cpminvid2 . (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses m2cpminvid2lem.s S=NConstPolyMatR
m2cpminvid2lem.p P=Poly1R
Assertion m2cpminvid2lem NFinRRingMSxNyNn0coe1algScPcoe1xMy0n=coe1xMyn

Proof

Step Hyp Ref Expression
1 m2cpminvid2lem.s S=NConstPolyMatR
2 m2cpminvid2lem.p P=Poly1R
3 eqid NMatP=NMatP
4 eqid BaseNMatP=BaseNMatP
5 1 2 3 4 cpmatelimp NFinRRingMSMBaseNMatPiNjNkcoe1iMjk=0R
6 5 3impia NFinRRingMSMBaseNMatPiNjNkcoe1iMjk=0R
7 6 simprd NFinRRingMSiNjNkcoe1iMjk=0R
8 7 adantr NFinRRingMSxNyNiNjNkcoe1iMjk=0R
9 fvoveq1 i=xcoe1iMj=coe1xMj
10 9 fveq1d i=xcoe1iMjk=coe1xMjk
11 10 eqeq1d i=xcoe1iMjk=0Rcoe1xMjk=0R
12 11 ralbidv i=xkcoe1iMjk=0Rkcoe1xMjk=0R
13 oveq2 j=yxMj=xMy
14 13 fveq2d j=ycoe1xMj=coe1xMy
15 14 fveq1d j=ycoe1xMjk=coe1xMyk
16 15 eqeq1d j=ycoe1xMjk=0Rcoe1xMyk=0R
17 16 ralbidv j=ykcoe1xMjk=0Rkcoe1xMyk=0R
18 12 17 rspc2v xNyNiNjNkcoe1iMjk=0Rkcoe1xMyk=0R
19 18 adantl NFinRRingMSxNyNiNjNkcoe1iMjk=0Rkcoe1xMyk=0R
20 fveqeq2 k=ncoe1xMyk=0Rcoe1xMyn=0R
21 20 cbvralvw kcoe1xMyk=0Rncoe1xMyn=0R
22 simpl2 NFinRRingMSxNyNRRing
23 eqid BaseP=BaseP
24 simprl NFinRRingMSxNyNxN
25 simprr NFinRRingMSxNyNyN
26 1 2 3 4 cpmatpmat NFinRRingMSMBaseNMatP
27 26 adantr NFinRRingMSxNyNMBaseNMatP
28 3 23 4 24 25 27 matecld NFinRRingMSxNyNxMyBaseP
29 0nn0 00
30 eqid coe1xMy=coe1xMy
31 eqid BaseR=BaseR
32 30 23 2 31 coe1fvalcl xMyBaseP00coe1xMy0BaseR
33 28 29 32 sylancl NFinRRingMSxNyNcoe1xMy0BaseR
34 22 33 jca NFinRRingMSxNyNRRingcoe1xMy0BaseR
35 34 adantr NFinRRingMSxNyNnRRingcoe1xMy0BaseR
36 eqid algScP=algScP
37 eqid 0R=0R
38 2 36 31 37 coe1scl RRingcoe1xMy0BaseRcoe1algScPcoe1xMy0=l0ifl=0coe1xMy00R
39 35 38 syl NFinRRingMSxNyNncoe1algScPcoe1xMy0=l0ifl=0coe1xMy00R
40 39 fveq1d NFinRRingMSxNyNncoe1algScPcoe1xMy0n=l0ifl=0coe1xMy00Rn
41 eqidd NFinRRingMSxNyNnl0ifl=0coe1xMy00R=l0ifl=0coe1xMy00R
42 eqeq1 l=nl=0n=0
43 42 ifbid l=nifl=0coe1xMy00R=ifn=0coe1xMy00R
44 43 adantl NFinRRingMSxNyNnl=nifl=0coe1xMy00R=ifn=0coe1xMy00R
45 nnnn0 nn0
46 45 adantl NFinRRingMSxNyNnn0
47 fvex coe1xMy0V
48 fvex 0RV
49 47 48 ifex ifn=0coe1xMy00RV
50 49 a1i NFinRRingMSxNyNnifn=0coe1xMy00RV
51 41 44 46 50 fvmptd NFinRRingMSxNyNnl0ifl=0coe1xMy00Rn=ifn=0coe1xMy00R
52 nnne0 nn0
53 52 neneqd n¬n=0
54 53 adantl NFinRRingMSxNyNn¬n=0
55 54 iffalsed NFinRRingMSxNyNnifn=0coe1xMy00R=0R
56 40 51 55 3eqtrd NFinRRingMSxNyNncoe1algScPcoe1xMy0n=0R
57 eqcom coe1xMyn=0R0R=coe1xMyn
58 57 biimpi coe1xMyn=0R0R=coe1xMyn
59 56 58 sylan9eq NFinRRingMSxNyNncoe1xMyn=0Rcoe1algScPcoe1xMy0n=coe1xMyn
60 59 ex NFinRRingMSxNyNncoe1xMyn=0Rcoe1algScPcoe1xMy0n=coe1xMyn
61 60 ralimdva NFinRRingMSxNyNncoe1xMyn=0Rncoe1algScPcoe1xMy0n=coe1xMyn
62 61 imp NFinRRingMSxNyNncoe1xMyn=0Rncoe1algScPcoe1xMy0n=coe1xMyn
63 34 adantr NFinRRingMSxNyNncoe1xMyn=0RRRingcoe1xMy0BaseR
64 2 36 31 ply1sclid RRingcoe1xMy0BaseRcoe1xMy0=coe1algScPcoe1xMy00
65 64 eqcomd RRingcoe1xMy0BaseRcoe1algScPcoe1xMy00=coe1xMy0
66 63 65 syl NFinRRingMSxNyNncoe1xMyn=0Rcoe1algScPcoe1xMy00=coe1xMy0
67 62 66 jca NFinRRingMSxNyNncoe1xMyn=0Rncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
68 67 ex NFinRRingMSxNyNncoe1xMyn=0Rncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
69 21 68 biimtrid NFinRRingMSxNyNkcoe1xMyk=0Rncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
70 19 69 syld NFinRRingMSxNyNiNjNkcoe1iMjk=0Rncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
71 8 70 mpd NFinRRingMSxNyNncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
72 c0ex 0V
73 fveq2 n=0coe1algScPcoe1xMy0n=coe1algScPcoe1xMy00
74 fveq2 n=0coe1xMyn=coe1xMy0
75 73 74 eqeq12d n=0coe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
76 75 ralunsn 0Vn0coe1algScPcoe1xMy0n=coe1xMynncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
77 72 76 mp1i NFinRRingMSxNyNn0coe1algScPcoe1xMy0n=coe1xMynncoe1algScPcoe1xMy0n=coe1xMyncoe1algScPcoe1xMy00=coe1xMy0
78 71 77 mpbird NFinRRingMSxNyNn0coe1algScPcoe1xMy0n=coe1xMyn
79 df-n0 0=0
80 79 raleqi n0coe1algScPcoe1xMy0n=coe1xMynn0coe1algScPcoe1xMy0n=coe1xMyn
81 78 80 sylibr NFinRRingMSxNyNn0coe1algScPcoe1xMy0n=coe1xMyn