| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminvid2lem.s |  | 
						
							| 2 |  | m2cpminvid2lem.p |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 2 3 4 | cpmatelimp |  | 
						
							| 6 | 5 | 3impia |  | 
						
							| 7 | 6 | simprd |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | fvoveq1 |  | 
						
							| 10 | 9 | fveq1d |  | 
						
							| 11 | 10 | eqeq1d |  | 
						
							| 12 | 11 | ralbidv |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 | 14 | fveq1d |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 | 16 | ralbidv |  | 
						
							| 18 | 12 17 | rspc2v |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | fveqeq2 |  | 
						
							| 21 | 20 | cbvralvw |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 | 1 2 3 4 | cpmatpmat |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 3 23 4 24 25 27 | matecld |  | 
						
							| 29 |  | 0nn0 |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 30 23 2 31 | coe1fvalcl |  | 
						
							| 33 | 28 29 32 | sylancl |  | 
						
							| 34 | 22 33 | jca |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 2 36 31 37 | coe1scl |  | 
						
							| 39 | 35 38 | syl |  | 
						
							| 40 | 39 | fveq1d |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 |  | eqeq1 |  | 
						
							| 43 | 42 | ifbid |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 |  | nnnn0 |  | 
						
							| 46 | 45 | adantl |  | 
						
							| 47 |  | fvex |  | 
						
							| 48 |  | fvex |  | 
						
							| 49 | 47 48 | ifex |  | 
						
							| 50 | 49 | a1i |  | 
						
							| 51 | 41 44 46 50 | fvmptd |  | 
						
							| 52 |  | nnne0 |  | 
						
							| 53 | 52 | neneqd |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 54 | iffalsed |  | 
						
							| 56 | 40 51 55 | 3eqtrd |  | 
						
							| 57 |  | eqcom |  | 
						
							| 58 | 57 | biimpi |  | 
						
							| 59 | 56 58 | sylan9eq |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 60 | ralimdva |  | 
						
							| 62 | 61 | imp |  | 
						
							| 63 | 34 | adantr |  | 
						
							| 64 | 2 36 31 | ply1sclid |  | 
						
							| 65 | 64 | eqcomd |  | 
						
							| 66 | 63 65 | syl |  | 
						
							| 67 | 62 66 | jca |  | 
						
							| 68 | 67 | ex |  | 
						
							| 69 | 21 68 | biimtrid |  | 
						
							| 70 | 19 69 | syld |  | 
						
							| 71 | 8 70 | mpd |  | 
						
							| 72 |  | c0ex |  | 
						
							| 73 |  | fveq2 |  | 
						
							| 74 |  | fveq2 |  | 
						
							| 75 | 73 74 | eqeq12d |  | 
						
							| 76 | 75 | ralunsn |  | 
						
							| 77 | 72 76 | mp1i |  | 
						
							| 78 | 71 77 | mpbird |  | 
						
							| 79 |  | df-n0 |  | 
						
							| 80 | 79 | raleqi |  | 
						
							| 81 | 78 80 | sylibr |  |