Metamath Proof Explorer


Theorem madulid

Description: Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in Lang p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses madurid.a A=NMatR
madurid.b B=BaseA
madurid.j J=NmaAdjuR
madurid.d D=NmaDetR
madurid.i 1˙=1A
madurid.t ·˙=A
madurid.s ˙=A
Assertion madulid MBRCRingJM·˙M=DM˙1˙

Proof

Step Hyp Ref Expression
1 madurid.a A=NMatR
2 madurid.b B=BaseA
3 madurid.j J=NmaAdjuR
4 madurid.d D=NmaDetR
5 madurid.i 1˙=1A
6 madurid.t ·˙=A
7 madurid.s ˙=A
8 simpr MBRCRingRCRing
9 1 3 2 maduf RCRingJ:BB
10 9 ffvelcdmda RCRingMBJMB
11 10 ancoms MBRCRingJMB
12 simpl MBRCRingMB
13 1 2 6 mattposm RCRingJMBMBtposJM·˙M=tposM·˙tposJM
14 8 11 12 13 syl3anc MBRCRingtposJM·˙M=tposM·˙tposJM
15 1 3 2 madutpos RCRingMBJtposM=tposJM
16 15 ancoms MBRCRingJtposM=tposJM
17 16 oveq2d MBRCRingtposM·˙JtposM=tposM·˙tposJM
18 1 2 mattposcl MBtposMB
19 1 2 3 4 5 6 7 madurid tposMBRCRingtposM·˙JtposM=DtposM˙1˙
20 18 19 sylan MBRCRingtposM·˙JtposM=DtposM˙1˙
21 14 17 20 3eqtr2d MBRCRingtposJM·˙M=DtposM˙1˙
22 21 tposeqd MBRCRingtpostposJM·˙M=tposDtposM˙1˙
23 1 2 matrcl MBNFinRV
24 23 simpld MBNFin
25 crngring RCRingRRing
26 1 matring NFinRRingARing
27 24 25 26 syl2an MBRCRingARing
28 2 6 ringcl ARingJMBMBJM·˙MB
29 27 11 12 28 syl3anc MBRCRingJM·˙MB
30 1 2 mattpostpos JM·˙MBtpostposJM·˙M=JM·˙M
31 29 30 syl MBRCRingtpostposJM·˙M=JM·˙M
32 eqid BaseR=BaseR
33 4 1 2 32 mdetf RCRingD:BBaseR
34 33 adantl MBRCRingD:BBaseR
35 18 adantr MBRCRingtposMB
36 34 35 ffvelcdmd MBRCRingDtposMBaseR
37 2 5 ringidcl ARing1˙B
38 27 37 syl MBRCRing1˙B
39 1 2 32 7 mattposvs DtposMBaseR1˙BtposDtposM˙1˙=DtposM˙tpos1˙
40 36 38 39 syl2anc MBRCRingtposDtposM˙1˙=DtposM˙tpos1˙
41 4 1 2 mdettpos RCRingMBDtposM=DM
42 41 ancoms MBRCRingDtposM=DM
43 1 5 mattpos1 NFinRRingtpos1˙=1˙
44 24 25 43 syl2an MBRCRingtpos1˙=1˙
45 42 44 oveq12d MBRCRingDtposM˙tpos1˙=DM˙1˙
46 40 45 eqtrd MBRCRingtposDtposM˙1˙=DM˙1˙
47 22 31 46 3eqtr3d MBRCRingJM·˙M=DM˙1˙