Metamath Proof Explorer


Theorem mapsnd

Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses mapsnd.1 φAV
mapsnd.2 φBW
Assertion mapsnd φAB=f|yAf=By

Proof

Step Hyp Ref Expression
1 mapsnd.1 φAV
2 mapsnd.2 φBW
3 snex BV
4 3 a1i φBV
5 1 4 elmapd φfABf:BA
6 ffn f:BAfFnB
7 snidg BWBB
8 2 7 syl φBB
9 fneu fFnBBB∃!yBfy
10 6 8 9 syl2anr φf:BA∃!yBfy
11 euabsn ∃!yBfyyy|Bfy=y
12 frel f:BARelf
13 relimasn RelffB=y|Bfy
14 12 13 syl f:BAfB=y|Bfy
15 fdm f:BAdomf=B
16 15 imaeq2d f:BAfdomf=fB
17 imadmrn fdomf=ranf
18 16 17 eqtr3di f:BAfB=ranf
19 14 18 eqtr3d f:BAy|Bfy=ranf
20 19 eqeq1d f:BAy|Bfy=yranf=y
21 20 exbidv f:BAyy|Bfy=yyranf=y
22 11 21 bitrid f:BA∃!yBfyyranf=y
23 22 adantl φf:BA∃!yBfyyranf=y
24 10 23 mpbid φf:BAyranf=y
25 frn f:BAranfA
26 25 sseld f:BAyranfyA
27 vsnid yy
28 eleq2 ranf=yyranfyy
29 27 28 mpbiri ranf=yyranf
30 26 29 impel f:BAranf=yyA
31 30 adantll φf:BAranf=yyA
32 ffrn f:BAf:Branf
33 feq3 ranf=yf:Branff:By
34 32 33 syl5ibcom f:BAranf=yf:By
35 34 imp f:BAranf=yf:By
36 35 adantll φf:BAranf=yf:By
37 2 ad2antrr φf:BAranf=yBW
38 vex yV
39 fsng BWyVf:Byf=By
40 37 38 39 sylancl φf:BAranf=yf:Byf=By
41 36 40 mpbid φf:BAranf=yf=By
42 31 41 jca φf:BAranf=yyAf=By
43 42 ex φf:BAranf=yyAf=By
44 43 eximdv φf:BAyranf=yyyAf=By
45 24 44 mpd φf:BAyyAf=By
46 df-rex yAf=ByyyAf=By
47 45 46 sylibr φf:BAyAf=By
48 47 ex φf:BAyAf=By
49 f1osng BWyVBy:B1-1 ontoy
50 2 38 49 sylancl φBy:B1-1 ontoy
51 50 adantr φf=ByBy:B1-1 ontoy
52 f1oeq1 f=Byf:B1-1 ontoyBy:B1-1 ontoy
53 52 bicomd f=ByBy:B1-1 ontoyf:B1-1 ontoy
54 53 adantl φf=ByBy:B1-1 ontoyf:B1-1 ontoy
55 51 54 mpbid φf=Byf:B1-1 ontoy
56 f1of f:B1-1 ontoyf:By
57 55 56 syl φf=Byf:By
58 57 3adant2 φyAf=Byf:By
59 snssi yAyA
60 59 3ad2ant2 φyAf=ByyA
61 58 60 fssd φyAf=Byf:BA
62 61 rexlimdv3a φyAf=Byf:BA
63 48 62 impbid φf:BAyAf=By
64 5 63 bitrd φfAByAf=By
65 64 eqabdv φAB=f|yAf=By