Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapsnd.1 | |
|
mapsnd.2 | |
||
Assertion | mapsnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnd.1 | |
|
2 | mapsnd.2 | |
|
3 | snex | |
|
4 | 3 | a1i | |
5 | 1 4 | elmapd | |
6 | ffn | |
|
7 | snidg | |
|
8 | 2 7 | syl | |
9 | fneu | |
|
10 | 6 8 9 | syl2anr | |
11 | euabsn | |
|
12 | frel | |
|
13 | relimasn | |
|
14 | 12 13 | syl | |
15 | fdm | |
|
16 | 15 | imaeq2d | |
17 | imadmrn | |
|
18 | 16 17 | eqtr3di | |
19 | 14 18 | eqtr3d | |
20 | 19 | eqeq1d | |
21 | 20 | exbidv | |
22 | 11 21 | bitrid | |
23 | 22 | adantl | |
24 | 10 23 | mpbid | |
25 | frn | |
|
26 | 25 | sseld | |
27 | vsnid | |
|
28 | eleq2 | |
|
29 | 27 28 | mpbiri | |
30 | 26 29 | impel | |
31 | 30 | adantll | |
32 | ffrn | |
|
33 | feq3 | |
|
34 | 32 33 | syl5ibcom | |
35 | 34 | imp | |
36 | 35 | adantll | |
37 | 2 | ad2antrr | |
38 | vex | |
|
39 | fsng | |
|
40 | 37 38 39 | sylancl | |
41 | 36 40 | mpbid | |
42 | 31 41 | jca | |
43 | 42 | ex | |
44 | 43 | eximdv | |
45 | 24 44 | mpd | |
46 | df-rex | |
|
47 | 45 46 | sylibr | |
48 | 47 | ex | |
49 | f1osng | |
|
50 | 2 38 49 | sylancl | |
51 | 50 | adantr | |
52 | f1oeq1 | |
|
53 | 52 | bicomd | |
54 | 53 | adantl | |
55 | 51 54 | mpbid | |
56 | f1of | |
|
57 | 55 56 | syl | |
58 | 57 | 3adant2 | |
59 | snssi | |
|
60 | 59 | 3ad2ant2 | |
61 | 58 60 | fssd | |
62 | 61 | rexlimdv3a | |
63 | 48 62 | impbid | |
64 | 5 63 | bitrd | |
65 | 64 | eqabdv | |