Metamath Proof Explorer


Theorem mapunen

Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of Mendelson p. 255. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion mapunen AVBWCXAB=CABCA×CB

Proof

Step Hyp Ref Expression
1 ovexd AVBWCXAB=CABV
2 ovexd AVBWCXAB=CAV
3 ovexd AVBWCXAB=CBV
4 2 3 xpexd AVBWCXAB=CA×CBV
5 elmapi xCABx:ABC
6 ssun1 AAB
7 fssres x:ABCAABxA:AC
8 5 6 7 sylancl xCABxA:AC
9 ssun2 BAB
10 fssres x:ABCBABxB:BC
11 5 9 10 sylancl xCABxB:BC
12 8 11 jca xCABxA:ACxB:BC
13 opelxp xAxBCA×CBxACAxBCB
14 simpl3 AVBWCXAB=CX
15 simpl1 AVBWCXAB=AV
16 14 15 elmapd AVBWCXAB=xACAxA:AC
17 simpl2 AVBWCXAB=BW
18 14 17 elmapd AVBWCXAB=xBCBxB:BC
19 16 18 anbi12d AVBWCXAB=xACAxBCBxA:ACxB:BC
20 13 19 bitrid AVBWCXAB=xAxBCA×CBxA:ACxB:BC
21 12 20 imbitrrid AVBWCXAB=xCABxAxBCA×CB
22 xp1st yCA×CB1styCA
23 22 adantl AVBWCXAB=yCA×CB1styCA
24 elmapi 1styCA1sty:AC
25 23 24 syl AVBWCXAB=yCA×CB1sty:AC
26 xp2nd yCA×CB2ndyCB
27 26 adantl AVBWCXAB=yCA×CB2ndyCB
28 elmapi 2ndyCB2ndy:BC
29 27 28 syl AVBWCXAB=yCA×CB2ndy:BC
30 simplr AVBWCXAB=yCA×CBAB=
31 25 29 30 fun2d AVBWCXAB=yCA×CB1sty2ndy:ABC
32 31 ex AVBWCXAB=yCA×CB1sty2ndy:ABC
33 unexg AVBWABV
34 15 17 33 syl2anc AVBWCXAB=ABV
35 14 34 elmapd AVBWCXAB=1sty2ndyCAB1sty2ndy:ABC
36 32 35 sylibrd AVBWCXAB=yCA×CB1sty2ndyCAB
37 1st2nd2 yCA×CBy=1sty2ndy
38 37 ad2antll AVBWCXAB=xCAByCA×CBy=1sty2ndy
39 25 adantrl AVBWCXAB=xCAByCA×CB1sty:AC
40 29 adantrl AVBWCXAB=xCAByCA×CB2ndy:BC
41 res0 1sty=
42 res0 2ndy=
43 41 42 eqtr4i 1sty=2ndy
44 simplr AVBWCXAB=xCAByCA×CBAB=
45 44 reseq2d AVBWCXAB=xCAByCA×CB1styAB=1sty
46 44 reseq2d AVBWCXAB=xCAByCA×CB2ndyAB=2ndy
47 43 45 46 3eqtr4a AVBWCXAB=xCAByCA×CB1styAB=2ndyAB
48 fresaunres1 1sty:AC2ndy:BC1styAB=2ndyAB1sty2ndyA=1sty
49 39 40 47 48 syl3anc AVBWCXAB=xCAByCA×CB1sty2ndyA=1sty
50 fresaunres2 1sty:AC2ndy:BC1styAB=2ndyAB1sty2ndyB=2ndy
51 39 40 47 50 syl3anc AVBWCXAB=xCAByCA×CB1sty2ndyB=2ndy
52 49 51 opeq12d AVBWCXAB=xCAByCA×CB1sty2ndyA1sty2ndyB=1sty2ndy
53 38 52 eqtr4d AVBWCXAB=xCAByCA×CBy=1sty2ndyA1sty2ndyB
54 reseq1 x=1sty2ndyxA=1sty2ndyA
55 reseq1 x=1sty2ndyxB=1sty2ndyB
56 54 55 opeq12d x=1sty2ndyxAxB=1sty2ndyA1sty2ndyB
57 56 eqeq2d x=1sty2ndyy=xAxBy=1sty2ndyA1sty2ndyB
58 53 57 syl5ibrcom AVBWCXAB=xCAByCA×CBx=1sty2ndyy=xAxB
59 ffn x:ABCxFnAB
60 fnresdm xFnABxAB=x
61 5 59 60 3syl xCABxAB=x
62 61 ad2antrl AVBWCXAB=xCAByCA×CBxAB=x
63 62 eqcomd AVBWCXAB=xCAByCA×CBx=xAB
64 vex xV
65 64 resex xAV
66 64 resex xBV
67 65 66 op1std y=xAxB1sty=xA
68 65 66 op2ndd y=xAxB2ndy=xB
69 67 68 uneq12d y=xAxB1sty2ndy=xAxB
70 resundi xAB=xAxB
71 69 70 eqtr4di y=xAxB1sty2ndy=xAB
72 71 eqeq2d y=xAxBx=1sty2ndyx=xAB
73 63 72 syl5ibrcom AVBWCXAB=xCAByCA×CBy=xAxBx=1sty2ndy
74 58 73 impbid AVBWCXAB=xCAByCA×CBx=1sty2ndyy=xAxB
75 74 ex AVBWCXAB=xCAByCA×CBx=1sty2ndyy=xAxB
76 1 4 21 36 75 en3d AVBWCXAB=CABCA×CB