Metamath Proof Explorer


Theorem mbfi1flim

Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses mbfi1flim.1 φFMblFn
mbfi1flim.2 φF:A
Assertion mbfi1flim φgg:dom1xAngnxFx

Proof

Step Hyp Ref Expression
1 mbfi1flim.1 φFMblFn
2 mbfi1flim.2 φF:A
3 iftrue yAifyAFy0=Fy
4 3 mpteq2ia yAifyAFy0=yAFy
5 2 feqmptd φF=yAFy
6 5 1 eqeltrrd φyAFyMblFn
7 4 6 eqeltrid φyAifyAFy0MblFn
8 fvex FyV
9 c0ex 0V
10 8 9 ifex ifyAFy0V
11 10 a1i φyAifyAFy0V
12 7 11 mbfdm2 φAdomvol
13 mblss AdomvolA
14 12 13 syl φA
15 rembl domvol
16 15 a1i φdomvol
17 eldifn yA¬yA
18 17 adantl φyA¬yA
19 18 iffalsed φyAifyAFy0=0
20 14 16 11 19 7 mbfss φyifyAFy0MblFn
21 2 ffvelcdmda φyAFy
22 0red φ¬yA0
23 21 22 ifclda φifyAFy0
24 23 adantr φyifyAFy0
25 24 fmpttd φyifyAFy0:
26 20 25 mbfi1flimlem φgg:dom1xngnxyifyAFy0x
27 ssralv AxngnxyifyAFy0xxAngnxyifyAFy0x
28 14 27 syl φxngnxyifyAFy0xxAngnxyifyAFy0x
29 14 sselda φxAx
30 eleq1w y=xyAxA
31 fveq2 y=xFy=Fx
32 30 31 ifbieq1d y=xifyAFy0=ifxAFx0
33 eqid yifyAFy0=yifyAFy0
34 fvex FxV
35 34 9 ifex ifxAFx0V
36 32 33 35 fvmpt xyifyAFy0x=ifxAFx0
37 29 36 syl φxAyifyAFy0x=ifxAFx0
38 iftrue xAifxAFx0=Fx
39 38 adantl φxAifxAFx0=Fx
40 37 39 eqtrd φxAyifyAFy0x=Fx
41 40 breq2d φxAngnxyifyAFy0xngnxFx
42 41 ralbidva φxAngnxyifyAFy0xxAngnxFx
43 28 42 sylibd φxngnxyifyAFy0xxAngnxFx
44 43 anim2d φg:dom1xngnxyifyAFy0xg:dom1xAngnxFx
45 44 eximdv φgg:dom1xngnxyifyAFy0xgg:dom1xAngnxFx
46 26 45 mpd φgg:dom1xAngnxFx