Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfi1flim.1 | |
|
mbfi1flim.2 | |
||
Assertion | mbfi1flim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfi1flim.1 | |
|
2 | mbfi1flim.2 | |
|
3 | iftrue | |
|
4 | 3 | mpteq2ia | |
5 | 2 | feqmptd | |
6 | 5 1 | eqeltrrd | |
7 | 4 6 | eqeltrid | |
8 | fvex | |
|
9 | c0ex | |
|
10 | 8 9 | ifex | |
11 | 10 | a1i | |
12 | 7 11 | mbfdm2 | |
13 | mblss | |
|
14 | 12 13 | syl | |
15 | rembl | |
|
16 | 15 | a1i | |
17 | eldifn | |
|
18 | 17 | adantl | |
19 | 18 | iffalsed | |
20 | 14 16 11 19 7 | mbfss | |
21 | 2 | ffvelcdmda | |
22 | 0red | |
|
23 | 21 22 | ifclda | |
24 | 23 | adantr | |
25 | 24 | fmpttd | |
26 | 20 25 | mbfi1flimlem | |
27 | ssralv | |
|
28 | 14 27 | syl | |
29 | 14 | sselda | |
30 | eleq1w | |
|
31 | fveq2 | |
|
32 | 30 31 | ifbieq1d | |
33 | eqid | |
|
34 | fvex | |
|
35 | 34 9 | ifex | |
36 | 32 33 35 | fvmpt | |
37 | 29 36 | syl | |
38 | iftrue | |
|
39 | 38 | adantl | |
40 | 37 39 | eqtrd | |
41 | 40 | breq2d | |
42 | 41 | ralbidva | |
43 | 28 42 | sylibd | |
44 | 43 | anim2d | |
45 | 44 | eximdv | |
46 | 26 45 | mpd | |