Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016) (Proof shortened by Thierry Arnoux, 7-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | measiun.1 | |
|
measiun.2 | |
||
measiun.3 | |
||
measiun.4 | |
||
Assertion | measiun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measiun.1 | |
|
2 | measiun.2 | |
|
3 | measiun.3 | |
|
4 | measiun.4 | |
|
5 | iccssxr | |
|
6 | measvxrge0 | |
|
7 | 1 2 6 | syl2anc | |
8 | 5 7 | sselid | |
9 | measbase | |
|
10 | 1 9 | syl | |
11 | 3 | ralrimiva | |
12 | sigaclcu2 | |
|
13 | 10 11 12 | syl2anc | |
14 | measvxrge0 | |
|
15 | 1 13 14 | syl2anc | |
16 | 5 15 | sselid | |
17 | nnex | |
|
18 | 1 | adantr | |
19 | measvxrge0 | |
|
20 | 18 3 19 | syl2anc | |
21 | 20 | ralrimiva | |
22 | nfcv | |
|
23 | 22 | esumcl | |
24 | 17 21 23 | sylancr | |
25 | 5 24 | sselid | |
26 | 1 2 13 4 | measssd | |
27 | nfcsb1v | |
|
28 | csbeq1a | |
|
29 | eqidd | |
|
30 | 29 | orcd | |
31 | 27 28 30 1 3 | measiuns | |
32 | 17 | a1i | |
33 | 10 | adantr | |
34 | nfv | |
|
35 | nfcv | |
|
36 | 35 | nfel1 | |
37 | 27 | nfel1 | |
38 | 36 37 | nfim | |
39 | 34 38 | nfim | |
40 | eleq1w | |
|
41 | 28 | eleq1d | |
42 | 40 41 | imbi12d | |
43 | 42 | imbi2d | |
44 | 3 | ex | |
45 | 39 43 44 | chvarfv | |
46 | 45 | ralrimiv | |
47 | fzossnn | |
|
48 | ssralv | |
|
49 | 47 48 | ax-mp | |
50 | sigaclfu2 | |
|
51 | 49 50 | sylan2 | |
52 | 10 46 51 | syl2anc | |
53 | 52 | adantr | |
54 | difelsiga | |
|
55 | 33 3 53 54 | syl3anc | |
56 | measvxrge0 | |
|
57 | 18 55 56 | syl2anc | |
58 | difssd | |
|
59 | 18 55 3 58 | measssd | |
60 | 32 57 20 59 | esumle | |
61 | 31 60 | eqbrtrd | |
62 | 8 16 25 26 61 | xrletrd | |