Metamath Proof Explorer


Theorem measiun

Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016) (Proof shortened by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Hypotheses measiun.1 φ M measures S
measiun.2 φ A S
measiun.3 φ n B S
measiun.4 φ A n B
Assertion measiun φ M A * n M B

Proof

Step Hyp Ref Expression
1 measiun.1 φ M measures S
2 measiun.2 φ A S
3 measiun.3 φ n B S
4 measiun.4 φ A n B
5 iccssxr 0 +∞ *
6 measvxrge0 M measures S A S M A 0 +∞
7 1 2 6 syl2anc φ M A 0 +∞
8 5 7 sselid φ M A *
9 measbase M measures S S ran sigAlgebra
10 1 9 syl φ S ran sigAlgebra
11 3 ralrimiva φ n B S
12 sigaclcu2 S ran sigAlgebra n B S n B S
13 10 11 12 syl2anc φ n B S
14 measvxrge0 M measures S n B S M n B 0 +∞
15 1 13 14 syl2anc φ M n B 0 +∞
16 5 15 sselid φ M n B *
17 nnex V
18 1 adantr φ n M measures S
19 measvxrge0 M measures S B S M B 0 +∞
20 18 3 19 syl2anc φ n M B 0 +∞
21 20 ralrimiva φ n M B 0 +∞
22 nfcv _ n
23 22 esumcl V n M B 0 +∞ * n M B 0 +∞
24 17 21 23 sylancr φ * n M B 0 +∞
25 5 24 sselid φ * n M B *
26 1 2 13 4 measssd φ M A M n B
27 nfcsb1v _ n k / n B
28 csbeq1a n = k B = k / n B
29 eqidd φ =
30 29 orcd φ = = 1 ..^ m
31 27 28 30 1 3 measiuns φ M n B = * n M B k 1 ..^ n k / n B
32 17 a1i φ V
33 10 adantr φ n S ran sigAlgebra
34 nfv n φ
35 nfcv _ n k
36 35 nfel1 n k
37 27 nfel1 n k / n B S
38 36 37 nfim n k k / n B S
39 34 38 nfim n φ k k / n B S
40 eleq1w n = k n k
41 28 eleq1d n = k B S k / n B S
42 40 41 imbi12d n = k n B S k k / n B S
43 42 imbi2d n = k φ n B S φ k k / n B S
44 3 ex φ n B S
45 39 43 44 chvarfv φ k k / n B S
46 45 ralrimiv φ k k / n B S
47 fzossnn 1 ..^ n
48 ssralv 1 ..^ n k k / n B S k 1 ..^ n k / n B S
49 47 48 ax-mp k k / n B S k 1 ..^ n k / n B S
50 sigaclfu2 S ran sigAlgebra k 1 ..^ n k / n B S k 1 ..^ n k / n B S
51 49 50 sylan2 S ran sigAlgebra k k / n B S k 1 ..^ n k / n B S
52 10 46 51 syl2anc φ k 1 ..^ n k / n B S
53 52 adantr φ n k 1 ..^ n k / n B S
54 difelsiga S ran sigAlgebra B S k 1 ..^ n k / n B S B k 1 ..^ n k / n B S
55 33 3 53 54 syl3anc φ n B k 1 ..^ n k / n B S
56 measvxrge0 M measures S B k 1 ..^ n k / n B S M B k 1 ..^ n k / n B 0 +∞
57 18 55 56 syl2anc φ n M B k 1 ..^ n k / n B 0 +∞
58 difssd φ n B k 1 ..^ n k / n B B
59 18 55 3 58 measssd φ n M B k 1 ..^ n k / n B M B
60 32 57 20 59 esumle φ * n M B k 1 ..^ n k / n B * n M B
61 31 60 eqbrtrd φ M n B * n M B
62 8 16 25 26 61 xrletrd φ M A * n M B