Metamath Proof Explorer


Theorem measiun

Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016) (Proof shortened by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Hypotheses measiun.1 φMmeasuresS
measiun.2 φAS
measiun.3 φnBS
measiun.4 φAnB
Assertion measiun φMA*nMB

Proof

Step Hyp Ref Expression
1 measiun.1 φMmeasuresS
2 measiun.2 φAS
3 measiun.3 φnBS
4 measiun.4 φAnB
5 iccssxr 0+∞*
6 measvxrge0 MmeasuresSASMA0+∞
7 1 2 6 syl2anc φMA0+∞
8 5 7 sselid φMA*
9 measbase MmeasuresSSransigAlgebra
10 1 9 syl φSransigAlgebra
11 3 ralrimiva φnBS
12 sigaclcu2 SransigAlgebranBSnBS
13 10 11 12 syl2anc φnBS
14 measvxrge0 MmeasuresSnBSMnB0+∞
15 1 13 14 syl2anc φMnB0+∞
16 5 15 sselid φMnB*
17 nnex V
18 1 adantr φnMmeasuresS
19 measvxrge0 MmeasuresSBSMB0+∞
20 18 3 19 syl2anc φnMB0+∞
21 20 ralrimiva φnMB0+∞
22 nfcv _n
23 22 esumcl VnMB0+∞*nMB0+∞
24 17 21 23 sylancr φ*nMB0+∞
25 5 24 sselid φ*nMB*
26 1 2 13 4 measssd φMAMnB
27 nfcsb1v _nk/nB
28 csbeq1a n=kB=k/nB
29 eqidd φ=
30 29 orcd φ==1..^m
31 27 28 30 1 3 measiuns φMnB=*nMBk1..^nk/nB
32 17 a1i φV
33 10 adantr φnSransigAlgebra
34 nfv nφ
35 nfcv _nk
36 35 nfel1 nk
37 27 nfel1 nk/nBS
38 36 37 nfim nkk/nBS
39 34 38 nfim nφkk/nBS
40 eleq1w n=knk
41 28 eleq1d n=kBSk/nBS
42 40 41 imbi12d n=knBSkk/nBS
43 42 imbi2d n=kφnBSφkk/nBS
44 3 ex φnBS
45 39 43 44 chvarfv φkk/nBS
46 45 ralrimiv φkk/nBS
47 fzossnn 1..^n
48 ssralv 1..^nkk/nBSk1..^nk/nBS
49 47 48 ax-mp kk/nBSk1..^nk/nBS
50 sigaclfu2 SransigAlgebrak1..^nk/nBSk1..^nk/nBS
51 49 50 sylan2 SransigAlgebrakk/nBSk1..^nk/nBS
52 10 46 51 syl2anc φk1..^nk/nBS
53 52 adantr φnk1..^nk/nBS
54 difelsiga SransigAlgebraBSk1..^nk/nBSBk1..^nk/nBS
55 33 3 53 54 syl3anc φnBk1..^nk/nBS
56 measvxrge0 MmeasuresSBk1..^nk/nBSMBk1..^nk/nB0+∞
57 18 55 56 syl2anc φnMBk1..^nk/nB0+∞
58 difssd φnBk1..^nk/nBB
59 18 55 3 58 measssd φnMBk1..^nk/nBMB
60 32 57 20 59 esumle φ*nMBk1..^nk/nB*nMB
61 31 60 eqbrtrd φMnB*nMB
62 8 16 25 26 61 xrletrd φMA*nMB