| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
2nn0 |
|
| 3 |
2
|
numexp1 |
|
| 4 |
|
df-2 |
|
| 5 |
3 4
|
eqtri |
|
| 6 |
|
prmuz2 |
|
| 7 |
6
|
adantl |
|
| 8 |
|
eluz2gt1 |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
1red |
|
| 11 |
|
2re |
|
| 12 |
11
|
a1i |
|
| 13 |
|
2ne0 |
|
| 14 |
13
|
a1i |
|
| 15 |
12 14 1
|
reexpclzd |
|
| 16 |
10 10 15
|
ltaddsubd |
|
| 17 |
9 16
|
mpbird |
|
| 18 |
5 17
|
eqbrtrid |
|
| 19 |
|
1zzd |
|
| 20 |
|
1lt2 |
|
| 21 |
20
|
a1i |
|
| 22 |
12 19 1 21
|
ltexp2d |
|
| 23 |
18 22
|
mpbird |
|
| 24 |
|
eluz2b1 |
|
| 25 |
1 23 24
|
sylanbrc |
|
| 26 |
|
simpllr |
|
| 27 |
|
prmnn |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
nncnd |
|
| 30 |
|
2nn |
|
| 31 |
|
elfzuz |
|
| 32 |
31
|
ad2antlr |
|
| 33 |
|
eluz2nn |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
nnnn0d |
|
| 36 |
|
nnexpcl |
|
| 37 |
30 35 36
|
sylancr |
|
| 38 |
37
|
nnzd |
|
| 39 |
|
peano2zm |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
zred |
|
| 42 |
41
|
recnd |
|
| 43 |
|
0red |
|
| 44 |
|
1red |
|
| 45 |
|
0lt1 |
|
| 46 |
45
|
a1i |
|
| 47 |
|
eluz2gt1 |
|
| 48 |
32 47
|
syl |
|
| 49 |
11
|
a1i |
|
| 50 |
|
1zzd |
|
| 51 |
|
elfzelz |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
20
|
a1i |
|
| 54 |
49 50 52 53
|
ltexp2d |
|
| 55 |
48 54
|
mpbid |
|
| 56 |
5 55
|
eqbrtrrid |
|
| 57 |
37
|
nnred |
|
| 58 |
44 44 57
|
ltaddsubd |
|
| 59 |
56 58
|
mpbid |
|
| 60 |
43 44 41 46 59
|
lttrd |
|
| 61 |
|
elnnz |
|
| 62 |
40 60 61
|
sylanbrc |
|
| 63 |
62
|
nnne0d |
|
| 64 |
29 42 63
|
divcan2d |
|
| 65 |
64 26
|
eqeltrd |
|
| 66 |
|
eluz2b2 |
|
| 67 |
62 59 66
|
sylanbrc |
|
| 68 |
37
|
nncnd |
|
| 69 |
|
ax-1cn |
|
| 70 |
|
subeq0 |
|
| 71 |
68 69 70
|
sylancl |
|
| 72 |
71
|
necon3bid |
|
| 73 |
63 72
|
mpbid |
|
| 74 |
|
simpr |
|
| 75 |
|
eluz2nn |
|
| 76 |
25 75
|
syl |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
nndivdvds |
|
| 79 |
77 34 78
|
syl2anc |
|
| 80 |
74 79
|
mpbid |
|
| 81 |
80
|
nnnn0d |
|
| 82 |
68 73 81
|
geoser |
|
| 83 |
15
|
ad2antrr |
|
| 84 |
83
|
recnd |
|
| 85 |
|
negsubdi2 |
|
| 86 |
84 69 85
|
sylancl |
|
| 87 |
77
|
nncnd |
|
| 88 |
34
|
nncnd |
|
| 89 |
34
|
nnne0d |
|
| 90 |
87 88 89
|
divcan2d |
|
| 91 |
90
|
oveq2d |
|
| 92 |
49
|
recnd |
|
| 93 |
92 81 35
|
expmuld |
|
| 94 |
91 93
|
eqtr3d |
|
| 95 |
94
|
oveq2d |
|
| 96 |
86 95
|
eqtrd |
|
| 97 |
|
negsubdi2 |
|
| 98 |
68 69 97
|
sylancl |
|
| 99 |
96 98
|
oveq12d |
|
| 100 |
29 42 63
|
div2negd |
|
| 101 |
82 99 100
|
3eqtr2d |
|
| 102 |
|
fzfid |
|
| 103 |
|
elfznn0 |
|
| 104 |
|
zexpcl |
|
| 105 |
38 103 104
|
syl2an |
|
| 106 |
102 105
|
fsumzcl |
|
| 107 |
101 106
|
eqeltrrd |
|
| 108 |
42
|
mullidd |
|
| 109 |
|
2z |
|
| 110 |
|
elfzm11 |
|
| 111 |
109 1 110
|
sylancr |
|
| 112 |
111
|
biimpa |
|
| 113 |
112
|
simp3d |
|
| 114 |
113
|
adantr |
|
| 115 |
1
|
ad2antrr |
|
| 116 |
49 52 115 53
|
ltexp2d |
|
| 117 |
114 116
|
mpbid |
|
| 118 |
57 83 44 117
|
ltsub1dd |
|
| 119 |
108 118
|
eqbrtrd |
|
| 120 |
28
|
nnred |
|
| 121 |
|
ltmuldiv |
|
| 122 |
44 120 41 60 121
|
syl112anc |
|
| 123 |
119 122
|
mpbid |
|
| 124 |
|
eluz2b1 |
|
| 125 |
107 123 124
|
sylanbrc |
|
| 126 |
|
nprm |
|
| 127 |
67 125 126
|
syl2anc |
|
| 128 |
65 127
|
pm2.65da |
|
| 129 |
128
|
ralrimiva |
|
| 130 |
|
isprm3 |
|
| 131 |
25 129 130
|
sylanbrc |
|