Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt25.1 |
|
2 |
|
metakunt25.2 |
|
3 |
|
metakunt25.3 |
|
4 |
|
metakunt25.4 |
|
5 |
|
eqid |
|
6 |
1 2 3 5
|
metakunt15 |
|
7 |
|
eqid |
|
8 |
1 2 3 7
|
metakunt16 |
|
9 |
|
f1osng |
|
10 |
1 1 9
|
syl2anc |
|
11 |
1 2 3
|
metakunt18 |
|
12 |
11
|
simpld |
|
13 |
12
|
simp1d |
|
14 |
12
|
simp2d |
|
15 |
12
|
simp3d |
|
16 |
11
|
simprd |
|
17 |
16
|
simp1d |
|
18 |
16
|
simp2d |
|
19 |
16
|
simp3d |
|
20 |
|
eleq1 |
|
21 |
|
eleq1 |
|
22 |
1
|
nnzd |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
|
eleq1 |
|
26 |
|
eleq1 |
|
27 |
|
elfzelz |
|
28 |
27
|
adantl |
|
29 |
28
|
adantr |
|
30 |
29
|
adantr |
|
31 |
23
|
ad2antrr |
|
32 |
2
|
nnzd |
|
33 |
32
|
adantr |
|
34 |
33
|
adantr |
|
35 |
34
|
adantr |
|
36 |
31 35
|
zsubcld |
|
37 |
30 36
|
zaddcld |
|
38 |
29
|
adantr |
|
39 |
|
1zzd |
|
40 |
34
|
adantr |
|
41 |
39 40
|
zsubcld |
|
42 |
38 41
|
zaddcld |
|
43 |
25 26 37 42
|
ifbothda |
|
44 |
20 21 24 43
|
ifbothda |
|
45 |
44 4
|
fmptd |
|
46 |
45
|
ffnd |
|
47 |
1 2 3 4 5 7
|
metakunt19 |
|
48 |
47
|
simpld |
|
49 |
48
|
simp3d |
|
50 |
47
|
simprd |
|
51 |
1 2 3
|
metakunt24 |
|
52 |
51
|
simp1d |
|
53 |
49 50 52
|
fnund |
|
54 |
51
|
simp2d |
|
55 |
1
|
adantr |
|
56 |
2
|
adantr |
|
57 |
3
|
adantr |
|
58 |
|
simpr |
|
59 |
55 56 57 4 5 7 58
|
metakunt23 |
|
60 |
46 53 54 59
|
eqfnfv2d2 |
|
61 |
51
|
simp3d |
|
62 |
6 8 10 13 14 15 17 18 19 60 54 61
|
metakunt17 |
|