Metamath Proof Explorer


Theorem metakunt29

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt29.1 φM
metakunt29.2 φI
metakunt29.3 φIM
metakunt29.4 φX1M
metakunt29.5 A=x1Mifx=IMifx<Ixx1
metakunt29.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt29.7 φ¬X=I
metakunt29.8 φX<I
metakunt29.9 C=y1Mify=MIify<Iyy+1
metakunt29.10 H=ifIX+M-I10
Assertion metakunt29 φCBAX=X+MI+H

Proof

Step Hyp Ref Expression
1 metakunt29.1 φM
2 metakunt29.2 φI
3 metakunt29.3 φIM
4 metakunt29.4 φX1M
5 metakunt29.5 A=x1Mifx=IMifx<Ixx1
6 metakunt29.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt29.7 φ¬X=I
8 metakunt29.8 φX<I
9 metakunt29.9 C=y1Mify=MIify<Iyy+1
10 metakunt29.10 H=ifIX+M-I10
11 1 2 3 4 5 6 7 8 metakunt27 φBAX=X+M-I
12 11 fveq2d φCBAX=CX+M-I
13 9 a1i φC=y1Mify=MIify<Iyy+1
14 elfznn X1MX
15 4 14 syl φX
16 nnre XX
17 15 16 syl φX
18 1 nnred φM
19 2 nnred φI
20 18 19 resubcld φMI
21 17 20 readdcld φX+M-I
22 17 recnd φX
23 18 recnd φM
24 19 recnd φI
25 22 23 24 addsub12d φX+M-I=M+X-I
26 23 24 22 subsub2d φMIX=M+X-I
27 19 17 resubcld φIX
28 17 19 posdifd φX<I0<IX
29 8 28 mpbid φ0<IX
30 27 29 elrpd φIX+
31 18 30 ltsubrpd φMIX<M
32 26 31 eqbrtrrd φM+X-I<M
33 25 32 eqbrtrd φX+M-I<M
34 21 33 ltned φX+M-IM
35 34 adantr φy=X+M-IX+M-IM
36 simpr φy=X+M-Iy=X+M-I
37 36 neeq1d φy=X+M-IyMX+M-IM
38 35 37 mpbird φy=X+M-IyM
39 38 neneqd φy=X+M-I¬y=M
40 39 iffalsed φy=X+M-Iify=MIify<Iyy+1=ify<Iyy+1
41 simpr φIX+M-IIX+M-I
42 19 adantr φIX+M-II
43 17 adantr φIX+M-IX
44 18 adantr φIX+M-IM
45 44 42 resubcld φIX+M-IMI
46 43 45 readdcld φIX+M-IX+M-I
47 42 46 lenltd φIX+M-IIX+M-I¬X+M-I<I
48 41 47 mpbid φIX+M-I¬X+M-I<I
49 48 3adant2 φy=X+M-IIX+M-I¬X+M-I<I
50 simp2 φy=X+M-IIX+M-Iy=X+M-I
51 50 breq1d φy=X+M-IIX+M-Iy<IX+M-I<I
52 51 notbid φy=X+M-IIX+M-I¬y<I¬X+M-I<I
53 49 52 mpbird φy=X+M-IIX+M-I¬y<I
54 53 iffalsed φy=X+M-IIX+M-Iify<Iyy+1=y+1
55 50 oveq1d φy=X+M-IIX+M-Iy+1=X+MI+1
56 54 55 eqtrd φy=X+M-IIX+M-Iify<Iyy+1=X+MI+1
57 simp3 φy=X+M-IIX+M-IIX+M-I
58 57 iftrued φy=X+M-IIX+M-IifIX+M-I10=1
59 58 eqcomd φy=X+M-IIX+M-I1=ifIX+M-I10
60 59 10 eqtr4di φy=X+M-IIX+M-I1=H
61 60 oveq2d φy=X+M-IIX+M-IX+MI+1=X+MI+H
62 56 61 eqtrd φy=X+M-IIX+M-Iify<Iyy+1=X+MI+H
63 62 3expa φy=X+M-IIX+M-Iify<Iyy+1=X+MI+H
64 21 19 ltnled φX+M-I<I¬IX+M-I
65 64 biimprd φ¬IX+M-IX+M-I<I
66 65 imp φ¬IX+M-IX+M-I<I
67 66 3adant2 φy=X+M-I¬IX+M-IX+M-I<I
68 simp2 φy=X+M-I¬IX+M-Iy=X+M-I
69 68 breq1d φy=X+M-I¬IX+M-Iy<IX+M-I<I
70 67 69 mpbird φy=X+M-I¬IX+M-Iy<I
71 70 iftrued φy=X+M-I¬IX+M-Iify<Iyy+1=y
72 22 adantr φX+M-I<IX
73 23 adantr φX+M-I<IM
74 24 adantr φX+M-I<II
75 73 74 subcld φX+M-I<IMI
76 72 75 addcld φX+M-I<IX+M-I
77 76 addridd φX+M-I<IX+MI+0=X+M-I
78 77 eqcomd φX+M-I<IX+M-I=X+MI+0
79 64 biimpa φX+M-I<I¬IX+M-I
80 79 iffalsed φX+M-I<IifIX+M-I10=0
81 80 eqcomd φX+M-I<I0=ifIX+M-I10
82 10 a1i φX+M-I<IH=ifIX+M-I10
83 82 eqcomd φX+M-I<IifIX+M-I10=H
84 81 83 eqtrd φX+M-I<I0=H
85 84 oveq2d φX+M-I<IX+MI+0=X+MI+H
86 78 85 eqtrd φX+M-I<IX+M-I=X+MI+H
87 86 ex φX+M-I<IX+M-I=X+MI+H
88 65 87 syld φ¬IX+M-IX+M-I=X+MI+H
89 88 imp φ¬IX+M-IX+M-I=X+MI+H
90 89 3adant2 φy=X+M-I¬IX+M-IX+M-I=X+MI+H
91 68 90 eqtrd φy=X+M-I¬IX+M-Iy=X+MI+H
92 71 91 eqtrd φy=X+M-I¬IX+M-Iify<Iyy+1=X+MI+H
93 92 3expa φy=X+M-I¬IX+M-Iify<Iyy+1=X+MI+H
94 63 93 pm2.61dan φy=X+M-Iify<Iyy+1=X+MI+H
95 40 94 eqtrd φy=X+M-Iify=MIify<Iyy+1=X+MI+H
96 1zzd φ1
97 1 nnzd φM
98 15 nnzd φX
99 2 nnzd φI
100 97 99 zsubcld φMI
101 98 100 zaddcld φX+M-I
102 1p0e1 1+0=1
103 1red φ1
104 0red φ0
105 15 nnge1d φ1X
106 18 19 subge0d φ0MIIM
107 3 106 mpbird φ0MI
108 103 104 17 20 105 107 le2addd φ1+0X+M-I
109 102 108 eqbrtrrid φ1X+M-I
110 21 18 33 ltled φX+M-IM
111 96 97 101 109 110 elfzd φX+M-I1M
112 111 elfzelzd φX+M-I
113 0zd φ0
114 96 113 ifcld φifIX+M-I10
115 10 a1i φH=ifIX+M-I10
116 115 eleq1d φHifIX+M-I10
117 114 116 mpbird φH
118 112 117 zaddcld φX+MI+H
119 13 95 111 118 fvmptd φCX+M-I=X+MI+H
120 12 119 eqtrd φCBAX=X+MI+H