Metamath Proof Explorer


Theorem minregex

Description: Given any cardinal number A , there exists an argument x , which yields the least regular uncountable value of aleph which is greater to or equal to A . This proof uses AC. (Contributed by RP, 23-Nov-2023)

Ref Expression
Assertion minregex ArancardωxOnx=yOn|yAycfy=y

Proof

Step Hyp Ref Expression
1 eldif ArancardωArancard¬Aω
2 omelon ωOn
3 cardon cardAOn
4 eleq1 cardA=AcardAOnAOn
5 3 4 mpbii cardA=AAOn
6 ontri1 ωOnAOnωA¬Aω
7 2 5 6 sylancr cardA=AωA¬Aω
8 7 pm5.32i cardA=AωAcardA=A¬Aω
9 iscard4 cardA=AArancard
10 9 anbi1i cardA=A¬AωArancard¬Aω
11 8 10 bitr2i Arancard¬AωcardA=AωA
12 ancom cardA=AωAωAcardA=A
13 1 11 12 3bitri ArancardωωAcardA=A
14 13 biimpi ArancardωωAcardA=A
15 cardalephex ωAcardA=AxOnA=x
16 15 biimpa ωAcardA=AxOnA=x
17 eqimss A=xAx
18 17 a1i ωAcardA=AA=xAx
19 18 reximdv ωAcardA=AxOnA=xxOnAx
20 16 19 mpd ωAcardA=AxOnAx
21 onintrab2 xOnAxxOn|AxOn
22 20 21 sylib ωAcardA=AxOn|AxOn
23 simpr ωAcardA=AxOn|AxOnxOn|AxOn
24 onsuc xOn|AxOnsucxOn|AxOn
25 23 24 syl ωAcardA=AxOn|AxOnsucxOn|AxOn
26 eloni xOn|AxOnOrdxOn|Ax
27 23 26 syl ωAcardA=AxOn|AxOnOrdxOn|Ax
28 0elsuc OrdxOn|AxsucxOn|Ax
29 27 28 syl ωAcardA=AxOn|AxOnsucxOn|Ax
30 cardaleph ωAcardA=AA=xOn|Ax
31 30 adantr ωAcardA=AxOn|AxOnA=xOn|Ax
32 sssucid xOn|AxsucxOn|Ax
33 alephord3 xOn|AxOnsucxOn|AxOnxOn|AxsucxOn|AxxOn|AxsucxOn|Ax
34 23 24 33 syl2anc2 ωAcardA=AxOn|AxOnxOn|AxsucxOn|AxxOn|AxsucxOn|Ax
35 32 34 mpbii ωAcardA=AxOn|AxOnxOn|AxsucxOn|Ax
36 31 35 eqsstrd ωAcardA=AxOn|AxOnAsucxOn|Ax
37 alephreg cfsucxOn|Ax=sucxOn|Ax
38 37 a1i ωAcardA=AxOn|AxOncfsucxOn|Ax=sucxOn|Ax
39 29 36 38 3jca ωAcardA=AxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
40 25 39 jca ωAcardA=AxOn|AxOnsucxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
41 14 22 40 syl2anc2 ArancardωsucxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
42 14 16 syl ArancardωxOnA=x
43 17 a1i ArancardωA=xAx
44 43 reximdv ArancardωxOnA=xxOnAx
45 42 44 mpd ArancardωxOnAx
46 45 21 sylib ArancardωxOn|AxOn
47 46 24 syl ArancardωsucxOn|AxOn
48 sbcan [˙sucxOn|Ax/y]˙yOnyAycfy=y[˙sucxOn|Ax/y]˙yOn[˙sucxOn|Ax/y]˙yAycfy=y
49 sbcel1v [˙sucxOn|Ax/y]˙yOnsucxOn|AxOn
50 49 a1i sucxOn|AxOn[˙sucxOn|Ax/y]˙yOnsucxOn|AxOn
51 sbc3an [˙sucxOn|Ax/y]˙yAycfy=y[˙sucxOn|Ax/y]˙y[˙sucxOn|Ax/y]˙Ay[˙sucxOn|Ax/y]˙cfy=y
52 sbcel2gv sucxOn|AxOn[˙sucxOn|Ax/y]˙ysucxOn|Ax
53 sbcssg sucxOn|AxOn[˙sucxOn|Ax/y]˙AysucxOn|Ax/yAsucxOn|Ax/yy
54 csbconstg sucxOn|AxOnsucxOn|Ax/yA=A
55 csbfv2g sucxOn|AxOnsucxOn|Ax/yy=sucxOn|Ax/yy
56 csbvarg sucxOn|AxOnsucxOn|Ax/yy=sucxOn|Ax
57 56 fveq2d sucxOn|AxOnsucxOn|Ax/yy=sucxOn|Ax
58 55 57 eqtrd sucxOn|AxOnsucxOn|Ax/yy=sucxOn|Ax
59 54 58 sseq12d sucxOn|AxOnsucxOn|Ax/yAsucxOn|Ax/yyAsucxOn|Ax
60 53 59 bitrd sucxOn|AxOn[˙sucxOn|Ax/y]˙AyAsucxOn|Ax
61 sbceqg sucxOn|AxOn[˙sucxOn|Ax/y]˙cfy=ysucxOn|Ax/ycfy=sucxOn|Ax/yy
62 csbfv2g sucxOn|AxOnsucxOn|Ax/ycfy=cfsucxOn|Ax/yy
63 58 fveq2d sucxOn|AxOncfsucxOn|Ax/yy=cfsucxOn|Ax
64 62 63 eqtrd sucxOn|AxOnsucxOn|Ax/ycfy=cfsucxOn|Ax
65 64 58 eqeq12d sucxOn|AxOnsucxOn|Ax/ycfy=sucxOn|Ax/yycfsucxOn|Ax=sucxOn|Ax
66 61 65 bitrd sucxOn|AxOn[˙sucxOn|Ax/y]˙cfy=ycfsucxOn|Ax=sucxOn|Ax
67 52 60 66 3anbi123d sucxOn|AxOn[˙sucxOn|Ax/y]˙y[˙sucxOn|Ax/y]˙Ay[˙sucxOn|Ax/y]˙cfy=ysucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
68 51 67 bitrid sucxOn|AxOn[˙sucxOn|Ax/y]˙yAycfy=ysucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
69 50 68 anbi12d sucxOn|AxOn[˙sucxOn|Ax/y]˙yOn[˙sucxOn|Ax/y]˙yAycfy=ysucxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
70 48 69 bitrid sucxOn|AxOn[˙sucxOn|Ax/y]˙yOnyAycfy=ysucxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
71 47 70 syl Arancardω[˙sucxOn|Ax/y]˙yOnyAycfy=ysucxOn|AxOnsucxOn|AxAsucxOn|AxcfsucxOn|Ax=sucxOn|Ax
72 41 71 mpbird Arancardω[˙sucxOn|Ax/y]˙yOnyAycfy=y
73 72 spesbcd ArancardωyyOnyAycfy=y
74 onintrab2 yOnyAycfy=yyOn|yAycfy=yOn
75 df-rex yOnyAycfy=yyyOnyAycfy=y
76 risset yOn|yAycfy=yOnxOnx=yOn|yAycfy=y
77 74 75 76 3bitr3i yyOnyAycfy=yxOnx=yOn|yAycfy=y
78 73 77 sylib ArancardωxOnx=yOn|yAycfy=y