| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modcl |  | 
						
							| 2 | 1 | 3adant2 |  | 
						
							| 3 |  | modcl |  | 
						
							| 4 | 3 | 3adant1 |  | 
						
							| 5 | 2 4 | subge0d |  | 
						
							| 6 |  | resubcl |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | rerpdivcl |  | 
						
							| 10 | 9 | flcld |  | 
						
							| 11 | 10 | 3adant2 |  | 
						
							| 12 |  | rerpdivcl |  | 
						
							| 13 | 12 | flcld |  | 
						
							| 14 | 13 | 3adant1 |  | 
						
							| 15 | 11 14 | zsubcld |  | 
						
							| 16 |  | modcyc2 |  | 
						
							| 17 | 7 8 15 16 | syl3anc |  | 
						
							| 18 |  | recn |  | 
						
							| 19 | 18 | 3ad2ant1 |  | 
						
							| 20 |  | recn |  | 
						
							| 21 | 20 | 3ad2ant2 |  | 
						
							| 22 |  | rpre |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 |  | refldivcl |  | 
						
							| 25 | 23 24 | remulcld |  | 
						
							| 26 | 25 | recnd |  | 
						
							| 27 | 26 | 3adant2 |  | 
						
							| 28 | 22 | adantl |  | 
						
							| 29 |  | refldivcl |  | 
						
							| 30 | 28 29 | remulcld |  | 
						
							| 31 | 30 | recnd |  | 
						
							| 32 | 31 | 3adant1 |  | 
						
							| 33 | 19 21 27 32 | sub4d |  | 
						
							| 34 | 22 | 3ad2ant3 |  | 
						
							| 35 | 34 | recnd |  | 
						
							| 36 | 24 | recnd |  | 
						
							| 37 | 36 | 3adant2 |  | 
						
							| 38 | 29 | recnd |  | 
						
							| 39 | 38 | 3adant1 |  | 
						
							| 40 | 35 37 39 | subdid |  | 
						
							| 41 | 40 | oveq2d |  | 
						
							| 42 |  | modval |  | 
						
							| 43 | 42 | 3adant2 |  | 
						
							| 44 |  | modval |  | 
						
							| 45 | 44 | 3adant1 |  | 
						
							| 46 | 43 45 | oveq12d |  | 
						
							| 47 | 33 41 46 | 3eqtr4d |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 17 48 | eqtr3d |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 2 4 | resubcld |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 |  | simpl3 |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 |  | modge0 |  | 
						
							| 56 | 55 | 3adant1 |  | 
						
							| 57 | 2 4 | subge02d |  | 
						
							| 58 | 56 57 | mpbid |  | 
						
							| 59 |  | modlt |  | 
						
							| 60 | 59 | 3adant2 |  | 
						
							| 61 | 51 2 34 58 60 | lelttrd |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 |  | modid |  | 
						
							| 64 | 52 53 54 62 63 | syl22anc |  | 
						
							| 65 | 50 64 | eqtrd |  | 
						
							| 66 |  | modge0 |  | 
						
							| 67 | 6 66 | stoic3 |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 |  | simpr |  | 
						
							| 70 | 68 69 | breqtrd |  | 
						
							| 71 | 65 70 | impbida |  | 
						
							| 72 | 5 71 | bitr3d |  |