Description: Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | modsubdir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modcl | |
|
2 | 1 | 3adant2 | |
3 | modcl | |
|
4 | 3 | 3adant1 | |
5 | 2 4 | subge0d | |
6 | resubcl | |
|
7 | 6 | 3adant3 | |
8 | simp3 | |
|
9 | rerpdivcl | |
|
10 | 9 | flcld | |
11 | 10 | 3adant2 | |
12 | rerpdivcl | |
|
13 | 12 | flcld | |
14 | 13 | 3adant1 | |
15 | 11 14 | zsubcld | |
16 | modcyc2 | |
|
17 | 7 8 15 16 | syl3anc | |
18 | recn | |
|
19 | 18 | 3ad2ant1 | |
20 | recn | |
|
21 | 20 | 3ad2ant2 | |
22 | rpre | |
|
23 | 22 | adantl | |
24 | refldivcl | |
|
25 | 23 24 | remulcld | |
26 | 25 | recnd | |
27 | 26 | 3adant2 | |
28 | 22 | adantl | |
29 | refldivcl | |
|
30 | 28 29 | remulcld | |
31 | 30 | recnd | |
32 | 31 | 3adant1 | |
33 | 19 21 27 32 | sub4d | |
34 | 22 | 3ad2ant3 | |
35 | 34 | recnd | |
36 | 24 | recnd | |
37 | 36 | 3adant2 | |
38 | 29 | recnd | |
39 | 38 | 3adant1 | |
40 | 35 37 39 | subdid | |
41 | 40 | oveq2d | |
42 | modval | |
|
43 | 42 | 3adant2 | |
44 | modval | |
|
45 | 44 | 3adant1 | |
46 | 43 45 | oveq12d | |
47 | 33 41 46 | 3eqtr4d | |
48 | 47 | oveq1d | |
49 | 17 48 | eqtr3d | |
50 | 49 | adantr | |
51 | 2 4 | resubcld | |
52 | 51 | adantr | |
53 | simpl3 | |
|
54 | simpr | |
|
55 | modge0 | |
|
56 | 55 | 3adant1 | |
57 | 2 4 | subge02d | |
58 | 56 57 | mpbid | |
59 | modlt | |
|
60 | 59 | 3adant2 | |
61 | 51 2 34 58 60 | lelttrd | |
62 | 61 | adantr | |
63 | modid | |
|
64 | 52 53 54 62 63 | syl22anc | |
65 | 50 64 | eqtrd | |
66 | modge0 | |
|
67 | 6 66 | stoic3 | |
68 | 67 | adantr | |
69 | simpr | |
|
70 | 68 69 | breqtrd | |
71 | 65 70 | impbida | |
72 | 5 71 | bitr3d | |