Metamath Proof Explorer


Theorem mptsnunlem

Description: This is the core of the proof of mptsnun , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses mptsnun.f F=xAx
mptsnun.r R=u|xAu=x
Assertion mptsnunlem BAB=FB

Proof

Step Hyp Ref Expression
1 mptsnun.f F=xAx
2 mptsnun.r R=u|xAu=x
3 df-ima FB=ranFB
4 1 reseq1i FB=xAxB
5 resmpt BAxAxB=xBx
6 4 5 eqtrid BAFB=xBx
7 6 rneqd BAranFB=ranxBx
8 rnmptsn ranxBx=u|xBu=x
9 7 8 eqtrdi BAranFB=u|xBu=x
10 3 9 eqtrid BAFB=u|xBu=x
11 10 unieqd BAFB=u|xBu=x
12 11 eleq2d BAxFBxu|xBu=x
13 eleq1w z=xzBxB
14 eluniab zu|xBu=xuzuxBu=x
15 ancom zuxBu=xxBu=xzu
16 r19.41v xBu=xzuxBu=xzu
17 df-rex xBu=xzuxxBu=xzu
18 15 16 17 3bitr2i zuxBu=xxxBu=xzu
19 eleq2 u=xzuzx
20 19 anbi2d u=xu=xzuu=xzx
21 20 adantr u=xzuu=xzuu=xzx
22 21 ibi u=xzuu=xzx
23 22 anim2i xBu=xzuxBu=xzx
24 23 eximi xxBu=xzuxxBu=xzx
25 18 24 sylbi zuxBu=xxxBu=xzx
26 an12 xBu=xzxu=xxBzx
27 26 exbii xxBu=xzxxu=xxBzx
28 exsimpr xu=xxBzxxxBzx
29 27 28 sylbi xxBu=xzxxxBzx
30 25 29 syl zuxBu=xxxBzx
31 30 exlimiv uzuxBu=xxxBzx
32 14 31 sylbi zu|xBu=xxxBzx
33 velsn zxz=x
34 33 anbi2i xBzxxBz=x
35 34 exbii xxBzxxxBz=x
36 32 35 sylib zu|xBu=xxxBz=x
37 13 biimparc xBz=xzB
38 37 exlimiv xxBz=xzB
39 36 38 syl zu|xBu=xzB
40 13 39 vtoclga xu|xBu=xxB
41 equid x=x
42 eqid x=x
43 vsnex xV
44 sbcg xV[˙x/u]˙xBxB
45 43 44 ax-mp [˙x/u]˙xBxB
46 eqsbc1 xV[˙x/u]˙u=xx=x
47 43 46 ax-mp [˙x/u]˙u=xx=x
48 19 adantl xBu=xzuzx
49 df-rex xBu=xxxBu=x
50 14 biimpri uzuxBu=xzu|xBu=x
51 50 19.23bi zuxBu=xzu|xBu=x
52 51 expcom xBu=xzuzu|xBu=x
53 49 52 sylbir xxBu=xzuzu|xBu=x
54 53 19.23bi xBu=xzuzu|xBu=x
55 48 54 sylbird xBu=xzxzu|xBu=x
56 55 sbcth xV[˙x/u]˙xBu=xzxzu|xBu=x
57 43 56 ax-mp [˙x/u]˙xBu=xzxzu|xBu=x
58 sbcimg xV[˙x/u]˙xBu=xzxzu|xBu=x[˙x/u]˙xBu=x[˙x/u]˙zxzu|xBu=x
59 43 58 ax-mp [˙x/u]˙xBu=xzxzu|xBu=x[˙x/u]˙xBu=x[˙x/u]˙zxzu|xBu=x
60 57 59 mpbi [˙x/u]˙xBu=x[˙x/u]˙zxzu|xBu=x
61 sbcan [˙x/u]˙xBu=x[˙x/u]˙xB[˙x/u]˙u=x
62 nfv uzx
63 nfab1 _uu|xBu=x
64 63 nfuni _uu|xBu=x
65 64 nfcri uzu|xBu=x
66 62 65 nfim uzxzu|xBu=x
67 43 66 sbcgfi [˙x/u]˙zxzu|xBu=xzxzu|xBu=x
68 60 61 67 3imtr3i [˙x/u]˙xB[˙x/u]˙u=xzxzu|xBu=x
69 45 47 68 syl2anbr xBx=xzxzu|xBu=x
70 42 69 mpan2 xBzxzu|xBu=x
71 33 70 biimtrrid xBz=xzu|xBu=x
72 eleq1w z=xzu|xBu=xxu|xBu=x
73 71 72 mpbidi xBz=xxu|xBu=x
74 73 com12 z=xxBxu|xBu=x
75 74 sbimi xzz=xxzxBxu|xBu=x
76 equsb3 xzz=xx=x
77 sbv xzxBxu|xBu=xxBxu|xBu=x
78 75 76 77 3imtr3i x=xxBxu|xBu=x
79 41 78 ax-mp xBxu|xBu=x
80 40 79 impbii xu|xBu=xxB
81 12 80 bitrdi BAxFBxB
82 81 eqrdv BAFB=B
83 82 eqcomd BAB=FB