| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrsubccat.s |  | 
						
							| 2 |  | mrsubccat.r |  | 
						
							| 3 |  | n0i |  | 
						
							| 4 | 1 | rnfvprc |  | 
						
							| 5 | 3 4 | nsyl2 |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 2 1 | mrsubff |  | 
						
							| 8 |  | ffun |  | 
						
							| 9 | 5 7 8 | 3syl |  | 
						
							| 10 | 6 2 1 | mrsubrn |  | 
						
							| 11 | 10 | eleq2i |  | 
						
							| 12 | 11 | biimpi |  | 
						
							| 13 |  | fvelima |  | 
						
							| 14 | 9 12 13 | syl2anc |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 |  | elfvex |  | 
						
							| 17 | 16 2 | eleq2s |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 6 2 | mrexval |  | 
						
							| 20 | 15 17 19 | 3syl |  | 
						
							| 21 | 15 20 | eleqtrd |  | 
						
							| 22 |  | simprr |  | 
						
							| 23 | 22 20 | eleqtrd |  | 
						
							| 24 |  | elmapi |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 26 | ffvelcdmda |  | 
						
							| 28 | 20 | ad2antrr |  | 
						
							| 29 | 27 28 | eleqtrd |  | 
						
							| 30 |  | simplr |  | 
						
							| 31 | 30 | s1cld |  | 
						
							| 32 | 29 31 | ifclda |  | 
						
							| 33 | 32 | fmpttd |  | 
						
							| 34 |  | ccatco |  | 
						
							| 35 | 21 23 33 34 | syl3anc |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 |  | fvex |  | 
						
							| 38 |  | fvex |  | 
						
							| 39 | 37 38 | unex |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 40 | frmdmnd |  | 
						
							| 42 | 39 41 | mp1i |  | 
						
							| 43 |  | wrdco |  | 
						
							| 44 | 21 33 43 | syl2anc |  | 
						
							| 45 |  | wrdco |  | 
						
							| 46 | 23 33 45 | syl2anc |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 40 47 | frmdbas |  | 
						
							| 49 | 39 48 | ax-mp |  | 
						
							| 50 | 49 | eqcomi |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 50 51 | gsumccat |  | 
						
							| 53 | 42 44 46 52 | syl3anc |  | 
						
							| 54 | 50 | gsumwcl |  | 
						
							| 55 | 42 44 54 | syl2anc |  | 
						
							| 56 | 50 | gsumwcl |  | 
						
							| 57 | 42 46 56 | syl2anc |  | 
						
							| 58 | 40 50 51 | frmdadd |  | 
						
							| 59 | 55 57 58 | syl2anc |  | 
						
							| 60 | 36 53 59 | 3eqtrd |  | 
						
							| 61 |  | ssidd |  | 
						
							| 62 |  | ccatcl |  | 
						
							| 63 | 21 23 62 | syl2anc |  | 
						
							| 64 | 63 20 | eleqtrrd |  | 
						
							| 65 | 18 6 2 1 40 | mrsubval |  | 
						
							| 66 | 25 61 64 65 | syl3anc |  | 
						
							| 67 | 18 6 2 1 40 | mrsubval |  | 
						
							| 68 | 25 61 15 67 | syl3anc |  | 
						
							| 69 | 18 6 2 1 40 | mrsubval |  | 
						
							| 70 | 25 61 22 69 | syl3anc |  | 
						
							| 71 | 68 70 | oveq12d |  | 
						
							| 72 | 60 66 71 | 3eqtr4d |  | 
						
							| 73 |  | fveq1 |  | 
						
							| 74 |  | fveq1 |  | 
						
							| 75 |  | fveq1 |  | 
						
							| 76 | 74 75 | oveq12d |  | 
						
							| 77 | 73 76 | eqeq12d |  | 
						
							| 78 | 72 77 | syl5ibcom |  | 
						
							| 79 | 78 | ex |  | 
						
							| 80 | 79 | com23 |  | 
						
							| 81 | 80 | rexlimiv |  | 
						
							| 82 | 14 81 | syl |  | 
						
							| 83 | 82 | 3impib |  |