Metamath Proof Explorer


Theorem mulginvcom

Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)

Ref Expression
Hypotheses mulginvcom.b B=BaseG
mulginvcom.t ·˙=G
mulginvcom.i I=invgG
Assertion mulginvcom GGrpNXBN·˙IX=IN·˙X

Proof

Step Hyp Ref Expression
1 mulginvcom.b B=BaseG
2 mulginvcom.t ·˙=G
3 mulginvcom.i I=invgG
4 oveq1 x=0x·˙IX=0·˙IX
5 fvoveq1 x=0Ix·˙X=I0·˙X
6 4 5 eqeq12d x=0x·˙IX=Ix·˙X0·˙IX=I0·˙X
7 oveq1 x=yx·˙IX=y·˙IX
8 fvoveq1 x=yIx·˙X=Iy·˙X
9 7 8 eqeq12d x=yx·˙IX=Ix·˙Xy·˙IX=Iy·˙X
10 oveq1 x=y+1x·˙IX=y+1·˙IX
11 fvoveq1 x=y+1Ix·˙X=Iy+1·˙X
12 10 11 eqeq12d x=y+1x·˙IX=Ix·˙Xy+1·˙IX=Iy+1·˙X
13 oveq1 x=yx·˙IX=y·˙IX
14 fvoveq1 x=yIx·˙X=Iy·˙X
15 13 14 eqeq12d x=yx·˙IX=Ix·˙Xy·˙IX=Iy·˙X
16 oveq1 x=Nx·˙IX=N·˙IX
17 fvoveq1 x=NIx·˙X=IN·˙X
18 16 17 eqeq12d x=Nx·˙IX=Ix·˙XN·˙IX=IN·˙X
19 eqid 0G=0G
20 19 3 grpinvid GGrpI0G=0G
21 20 eqcomd GGrp0G=I0G
22 21 adantr GGrpXB0G=I0G
23 1 3 grpinvcl GGrpXBIXB
24 1 19 2 mulg0 IXB0·˙IX=0G
25 23 24 syl GGrpXB0·˙IX=0G
26 1 19 2 mulg0 XB0·˙X=0G
27 26 adantl GGrpXB0·˙X=0G
28 27 fveq2d GGrpXBI0·˙X=I0G
29 22 25 28 3eqtr4d GGrpXB0·˙IX=I0·˙X
30 oveq2 y·˙IX=Iy·˙XIX+Gy·˙IX=IX+GIy·˙X
31 30 adantl GGrpy0XBy·˙IX=Iy·˙XIX+Gy·˙IX=IX+GIy·˙X
32 grpmnd GGrpGMnd
33 32 3ad2ant1 GGrpy0XBGMnd
34 simp2 GGrpy0XBy0
35 23 3adant2 GGrpy0XBIXB
36 eqid +G=+G
37 1 2 36 mulgnn0p1 GMndy0IXBy+1·˙IX=y·˙IX+GIX
38 33 34 35 37 syl3anc GGrpy0XBy+1·˙IX=y·˙IX+GIX
39 simp1 GGrpy0XBGGrp
40 nn0z y0y
41 40 3ad2ant2 GGrpy0XBy
42 1 2 36 mulgaddcom GGrpyIXBy·˙IX+GIX=IX+Gy·˙IX
43 39 41 35 42 syl3anc GGrpy0XBy·˙IX+GIX=IX+Gy·˙IX
44 38 43 eqtrd GGrpy0XBy+1·˙IX=IX+Gy·˙IX
45 44 adantr GGrpy0XBy·˙IX=Iy·˙Xy+1·˙IX=IX+Gy·˙IX
46 1 2 36 mulgnn0p1 GMndy0XBy+1·˙X=y·˙X+GX
47 32 46 syl3an1 GGrpy0XBy+1·˙X=y·˙X+GX
48 47 fveq2d GGrpy0XBIy+1·˙X=Iy·˙X+GX
49 1 2 mulgcl GGrpyXBy·˙XB
50 40 49 syl3an2 GGrpy0XBy·˙XB
51 1 36 3 grpinvadd GGrpy·˙XBXBIy·˙X+GX=IX+GIy·˙X
52 50 51 syld3an2 GGrpy0XBIy·˙X+GX=IX+GIy·˙X
53 48 52 eqtrd GGrpy0XBIy+1·˙X=IX+GIy·˙X
54 53 adantr GGrpy0XBy·˙IX=Iy·˙XIy+1·˙X=IX+GIy·˙X
55 31 45 54 3eqtr4d GGrpy0XBy·˙IX=Iy·˙Xy+1·˙IX=Iy+1·˙X
56 55 3exp1 GGrpy0XBy·˙IX=Iy·˙Xy+1·˙IX=Iy+1·˙X
57 56 com23 GGrpXBy0y·˙IX=Iy·˙Xy+1·˙IX=Iy+1·˙X
58 57 imp GGrpXBy0y·˙IX=Iy·˙Xy+1·˙IX=Iy+1·˙X
59 nnz yy
60 23 3adant2 GGrpyXBIXB
61 1 2 3 mulgneg GGrpyIXBy·˙IX=Iy·˙IX
62 60 61 syld3an3 GGrpyXBy·˙IX=Iy·˙IX
63 62 adantr GGrpyXBy·˙IX=Iy·˙Xy·˙IX=Iy·˙IX
64 1 2 3 mulgneg GGrpyXBy·˙X=Iy·˙X
65 64 adantr GGrpyXBy·˙IX=Iy·˙Xy·˙X=Iy·˙X
66 simpr GGrpyXBy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
67 65 66 eqtr4d GGrpyXBy·˙IX=Iy·˙Xy·˙X=y·˙IX
68 67 fveq2d GGrpyXBy·˙IX=Iy·˙XIy·˙X=Iy·˙IX
69 63 68 eqtr4d GGrpyXBy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
70 69 3exp1 GGrpyXBy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
71 70 com23 GGrpXByy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
72 71 imp GGrpXByy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
73 59 72 syl5 GGrpXByy·˙IX=Iy·˙Xy·˙IX=Iy·˙X
74 6 9 12 15 18 29 58 73 zindd GGrpXBNN·˙IX=IN·˙X
75 74 ex GGrpXBNN·˙IX=IN·˙X
76 75 com23 GGrpNXBN·˙IX=IN·˙X
77 76 3imp GGrpNXBN·˙IX=IN·˙X