Metamath Proof Explorer


Theorem neglimc

Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses neglimc.f F=xAB
neglimc.g G=xAB
neglimc.b φxAB
neglimc.c φCFlimD
Assertion neglimc φCGlimD

Proof

Step Hyp Ref Expression
1 neglimc.f F=xAB
2 neglimc.g G=xAB
3 neglimc.b φxAB
4 neglimc.c φCFlimD
5 limccl FlimD
6 5 4 sselid φC
7 6 negcld φC
8 3 1 fmptd φF:A
9 1 3 4 limcmptdm φA
10 limcrcl CFlimDF:domFdomFD
11 4 10 syl φF:domFdomFD
12 11 simp3d φD
13 8 9 12 ellimc3 φCFlimDCy+w+vAvDvD<wFvC<y
14 4 13 mpbid φCy+w+vAvDvD<wFvC<y
15 14 simprd φy+w+vAvDvD<wFvC<y
16 15 r19.21bi φy+w+vAvDvD<wFvC<y
17 simplll φy+w+vAφ
18 17 3ad2ant1 φy+w+vAvDvD<wFvC<yvDvD<wφ
19 simp1r φy+w+vAvDvD<wFvC<yvDvD<wvA
20 simp3 φy+w+vAvDvD<wFvC<yvDvD<wvDvD<w
21 simp2 φy+w+vAvDvD<wFvC<yvDvD<wvDvD<wFvC<y
22 20 21 mpd φy+w+vAvDvD<wFvC<yvDvD<wFvC<y
23 nfv xφvA
24 nfmpt1 _xxAB
25 2 24 nfcxfr _xG
26 nfcv _xv
27 25 26 nffv _xGv
28 nfmpt1 _xxAB
29 1 28 nfcxfr _xF
30 29 26 nffv _xFv
31 30 nfneg _xFv
32 27 31 nfeq xGv=Fv
33 23 32 nfim xφvAGv=Fv
34 eleq1w x=vxAvA
35 34 anbi2d x=vφxAφvA
36 fveq2 x=vGx=Gv
37 fveq2 x=vFx=Fv
38 37 negeqd x=vFx=Fv
39 36 38 eqeq12d x=vGx=FxGv=Fv
40 35 39 imbi12d x=vφxAGx=FxφvAGv=Fv
41 simpr φxAxA
42 3 negcld φxAB
43 2 fvmpt2 xABGx=B
44 41 42 43 syl2anc φxAGx=B
45 1 fvmpt2 xABFx=B
46 41 3 45 syl2anc φxAFx=B
47 46 negeqd φxAFx=B
48 44 47 eqtr4d φxAGx=Fx
49 33 40 48 chvarfv φvAGv=Fv
50 49 oveq1d φvAGvC=-Fv-C
51 8 ffvelcdmda φvAFv
52 6 adantr φvAC
53 51 52 negsubdi3d φvAFvC=-Fv-C
54 50 53 eqtr4d φvAGvC=FvC
55 54 fveq2d φvAGvC=FvC
56 51 52 subcld φvAFvC
57 56 absnegd φvAFvC=FvC
58 55 57 eqtrd φvAGvC=FvC
59 58 adantr φvAFvC<yGvC=FvC
60 simpr φvAFvC<yFvC<y
61 59 60 eqbrtrd φvAFvC<yGvC<y
62 18 19 22 61 syl21anc φy+w+vAvDvD<wFvC<yvDvD<wGvC<y
63 62 3exp φy+w+vAvDvD<wFvC<yvDvD<wGvC<y
64 63 ralimdva φy+w+vAvDvD<wFvC<yvAvDvD<wGvC<y
65 64 reximdva φy+w+vAvDvD<wFvC<yw+vAvDvD<wGvC<y
66 16 65 mpd φy+w+vAvDvD<wGvC<y
67 66 ralrimiva φy+w+vAvDvD<wGvC<y
68 42 2 fmptd φG:A
69 68 9 12 ellimc3 φCGlimDCy+w+vAvDvD<wGvC<y
70 7 67 69 mpbir2and φCGlimD