Metamath Proof Explorer


Theorem nfrgr2v

Description: Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017) (Proof shortened by Alexander van der Vekens, 13-Sep-2018) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion nfrgr2v AXBYABVtxG=ABGFriendGraph

Proof

Step Hyp Ref Expression
1 neirr ¬AA
2 eqid EdgG=EdgG
3 2 usgredgne GUSGraphAAEdgGAA
4 3 ex GUSGraphAAEdgGAA
5 1 4 mtoi GUSGraph¬AAEdgG
6 5 adantl AXBYABGUSGraph¬AAEdgG
7 6 intnanrd AXBYABGUSGraph¬AAEdgGABEdgG
8 prex AAV
9 prex ABV
10 8 9 prss AAEdgGABEdgGAAABEdgG
11 7 10 sylnib AXBYABGUSGraph¬AAABEdgG
12 neirr ¬BB
13 2 usgredgne GUSGraphBBEdgGBB
14 13 ex GUSGraphBBEdgGBB
15 12 14 mtoi GUSGraph¬BBEdgG
16 15 adantl AXBYABGUSGraph¬BBEdgG
17 16 intnand AXBYABGUSGraph¬BAEdgGBBEdgG
18 prex BAV
19 prex BBV
20 18 19 prss BAEdgGBBEdgGBABBEdgG
21 17 20 sylnib AXBYABGUSGraph¬BABBEdgG
22 ioran ¬AAABEdgGBABBEdgG¬AAABEdgG¬BABBEdgG
23 11 21 22 sylanbrc AXBYABGUSGraph¬AAABEdgGBABBEdgG
24 preq1 x=AxA=AA
25 preq1 x=AxB=AB
26 24 25 preq12d x=AxAxB=AAAB
27 26 sseq1d x=AxAxBEdgGAAABEdgG
28 preq1 x=BxA=BA
29 preq1 x=BxB=BB
30 28 29 preq12d x=BxAxB=BABB
31 30 sseq1d x=BxAxBEdgGBABBEdgG
32 27 31 rexprg AXBYxABxAxBEdgGAAABEdgGBABBEdgG
33 32 3adant3 AXBYABxABxAxBEdgGAAABEdgGBABBEdgG
34 33 adantr AXBYABGUSGraphxABxAxBEdgGAAABEdgGBABBEdgG
35 23 34 mtbird AXBYABGUSGraph¬xABxAxBEdgG
36 reurex ∃!xABxAxBEdgGxABxAxBEdgG
37 35 36 nsyl AXBYABGUSGraph¬∃!xABxAxBEdgG
38 37 orcd AXBYABGUSGraph¬∃!xABxAxBEdgG¬∃!xABxBxAEdgG
39 rexnal lABA¬∃!xABxAxlEdgG¬lABA∃!xABxAxlEdgG
40 39 bicomi ¬lABA∃!xABxAxlEdgGlABA¬∃!xABxAxlEdgG
41 40 a1i AXBYABGUSGraph¬lABA∃!xABxAxlEdgGlABA¬∃!xABxAxlEdgG
42 difprsn1 ABABA=B
43 42 3ad2ant3 AXBYABABA=B
44 43 adantr AXBYABGUSGraphABA=B
45 44 rexeqdv AXBYABGUSGraphlABA¬∃!xABxAxlEdgGlB¬∃!xABxAxlEdgG
46 preq2 l=Bxl=xB
47 46 preq2d l=BxAxl=xAxB
48 47 sseq1d l=BxAxlEdgGxAxBEdgG
49 48 reubidv l=B∃!xABxAxlEdgG∃!xABxAxBEdgG
50 49 notbid l=B¬∃!xABxAxlEdgG¬∃!xABxAxBEdgG
51 50 rexsng BYlB¬∃!xABxAxlEdgG¬∃!xABxAxBEdgG
52 51 3ad2ant2 AXBYABlB¬∃!xABxAxlEdgG¬∃!xABxAxBEdgG
53 52 adantr AXBYABGUSGraphlB¬∃!xABxAxlEdgG¬∃!xABxAxBEdgG
54 41 45 53 3bitrd AXBYABGUSGraph¬lABA∃!xABxAxlEdgG¬∃!xABxAxBEdgG
55 rexnal lABB¬∃!xABxBxlEdgG¬lABB∃!xABxBxlEdgG
56 55 bicomi ¬lABB∃!xABxBxlEdgGlABB¬∃!xABxBxlEdgG
57 56 a1i AXBYABGUSGraph¬lABB∃!xABxBxlEdgGlABB¬∃!xABxBxlEdgG
58 difprsn2 ABABB=A
59 58 3ad2ant3 AXBYABABB=A
60 59 adantr AXBYABGUSGraphABB=A
61 60 rexeqdv AXBYABGUSGraphlABB¬∃!xABxBxlEdgGlA¬∃!xABxBxlEdgG
62 preq2 l=Axl=xA
63 62 preq2d l=AxBxl=xBxA
64 63 sseq1d l=AxBxlEdgGxBxAEdgG
65 64 reubidv l=A∃!xABxBxlEdgG∃!xABxBxAEdgG
66 65 notbid l=A¬∃!xABxBxlEdgG¬∃!xABxBxAEdgG
67 66 rexsng AXlA¬∃!xABxBxlEdgG¬∃!xABxBxAEdgG
68 67 3ad2ant1 AXBYABlA¬∃!xABxBxlEdgG¬∃!xABxBxAEdgG
69 68 adantr AXBYABGUSGraphlA¬∃!xABxBxlEdgG¬∃!xABxBxAEdgG
70 57 61 69 3bitrd AXBYABGUSGraph¬lABB∃!xABxBxlEdgG¬∃!xABxBxAEdgG
71 54 70 orbi12d AXBYABGUSGraph¬lABA∃!xABxAxlEdgG¬lABB∃!xABxBxlEdgG¬∃!xABxAxBEdgG¬∃!xABxBxAEdgG
72 38 71 mpbird AXBYABGUSGraph¬lABA∃!xABxAxlEdgG¬lABB∃!xABxBxlEdgG
73 sneq k=Ak=A
74 73 difeq2d k=AABk=ABA
75 preq2 k=Axk=xA
76 75 preq1d k=Axkxl=xAxl
77 76 sseq1d k=AxkxlEdgGxAxlEdgG
78 77 reubidv k=A∃!xABxkxlEdgG∃!xABxAxlEdgG
79 74 78 raleqbidv k=AlABk∃!xABxkxlEdgGlABA∃!xABxAxlEdgG
80 79 notbid k=A¬lABk∃!xABxkxlEdgG¬lABA∃!xABxAxlEdgG
81 sneq k=Bk=B
82 81 difeq2d k=BABk=ABB
83 preq2 k=Bxk=xB
84 83 preq1d k=Bxkxl=xBxl
85 84 sseq1d k=BxkxlEdgGxBxlEdgG
86 85 reubidv k=B∃!xABxkxlEdgG∃!xABxBxlEdgG
87 82 86 raleqbidv k=BlABk∃!xABxkxlEdgGlABB∃!xABxBxlEdgG
88 87 notbid k=B¬lABk∃!xABxkxlEdgG¬lABB∃!xABxBxlEdgG
89 80 88 rexprg AXBYkAB¬lABk∃!xABxkxlEdgG¬lABA∃!xABxAxlEdgG¬lABB∃!xABxBxlEdgG
90 89 3adant3 AXBYABkAB¬lABk∃!xABxkxlEdgG¬lABA∃!xABxAxlEdgG¬lABB∃!xABxBxlEdgG
91 90 adantr AXBYABGUSGraphkAB¬lABk∃!xABxkxlEdgG¬lABA∃!xABxAxlEdgG¬lABB∃!xABxBxlEdgG
92 72 91 mpbird AXBYABGUSGraphkAB¬lABk∃!xABxkxlEdgG
93 rexnal kAB¬lABk∃!xABxkxlEdgG¬kABlABk∃!xABxkxlEdgG
94 92 93 sylib AXBYABGUSGraph¬kABlABk∃!xABxkxlEdgG
95 94 intnand AXBYABGUSGraph¬GUSGraphkABlABk∃!xABxkxlEdgG
96 95 adantlr AXBYABVtxG=ABGUSGraph¬GUSGraphkABlABk∃!xABxkxlEdgG
97 id VtxG=ABVtxG=AB
98 difeq1 VtxG=ABVtxGk=ABk
99 reueq1 VtxG=AB∃!xVtxGxkxlEdgG∃!xABxkxlEdgG
100 98 99 raleqbidv VtxG=ABlVtxGk∃!xVtxGxkxlEdgGlABk∃!xABxkxlEdgG
101 97 100 raleqbidv VtxG=ABkVtxGlVtxGk∃!xVtxGxkxlEdgGkABlABk∃!xABxkxlEdgG
102 101 anbi2d VtxG=ABGUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgGGUSGraphkABlABk∃!xABxkxlEdgG
103 102 notbid VtxG=AB¬GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG¬GUSGraphkABlABk∃!xABxkxlEdgG
104 103 adantl AXBYABVtxG=AB¬GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG¬GUSGraphkABlABk∃!xABxkxlEdgG
105 104 adantr AXBYABVtxG=ABGUSGraph¬GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG¬GUSGraphkABlABk∃!xABxkxlEdgG
106 96 105 mpbird AXBYABVtxG=ABGUSGraph¬GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG
107 df-nel GFriendGraph¬GFriendGraph
108 eqid VtxG=VtxG
109 108 2 isfrgr GFriendGraphGUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG
110 107 109 xchbinx GFriendGraph¬GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG
111 106 110 sylibr AXBYABVtxG=ABGUSGraphGFriendGraph
112 111 expcom GUSGraphAXBYABVtxG=ABGFriendGraph
113 frgrusgr GFriendGraphGUSGraph
114 113 con3i ¬GUSGraph¬GFriendGraph
115 114 107 sylibr ¬GUSGraphGFriendGraph
116 115 a1d ¬GUSGraphAXBYABVtxG=ABGFriendGraph
117 112 116 pm2.61i AXBYABVtxG=ABGFriendGraph