Metamath Proof Explorer


Theorem nlmvscnlem1

Description: Lemma for nlmvscn . (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nlmvscn.f F=ScalarW
nlmvscn.v V=BaseW
nlmvscn.k K=BaseF
nlmvscn.d D=distW
nlmvscn.e E=distF
nlmvscn.n N=normW
nlmvscn.a A=normF
nlmvscn.s ·˙=W
nlmvscn.t T=R2AB+1
nlmvscn.u U=R2NX+T
nlmvscn.w φWNrmMod
nlmvscn.r φR+
nlmvscn.b φBK
nlmvscn.x φXV
Assertion nlmvscnlem1 φr+xKyVBEx<rXDy<rB·˙XDx·˙y<R

Proof

Step Hyp Ref Expression
1 nlmvscn.f F=ScalarW
2 nlmvscn.v V=BaseW
3 nlmvscn.k K=BaseF
4 nlmvscn.d D=distW
5 nlmvscn.e E=distF
6 nlmvscn.n N=normW
7 nlmvscn.a A=normF
8 nlmvscn.s ·˙=W
9 nlmvscn.t T=R2AB+1
10 nlmvscn.u U=R2NX+T
11 nlmvscn.w φWNrmMod
12 nlmvscn.r φR+
13 nlmvscn.b φBK
14 nlmvscn.x φXV
15 12 rphalfcld φR2+
16 1 nlmngp2 WNrmModFNrmGrp
17 11 16 syl φFNrmGrp
18 3 7 nmcl FNrmGrpBKAB
19 17 13 18 syl2anc φAB
20 3 7 nmge0 FNrmGrpBK0AB
21 17 13 20 syl2anc φ0AB
22 19 21 ge0p1rpd φAB+1+
23 15 22 rpdivcld φR2AB+1+
24 9 23 eqeltrid φT+
25 nlmngp WNrmModWNrmGrp
26 11 25 syl φWNrmGrp
27 2 6 nmcl WNrmGrpXVNX
28 26 14 27 syl2anc φNX
29 24 rpred φT
30 28 29 readdcld φNX+T
31 0red φ0
32 2 6 nmge0 WNrmGrpXV0NX
33 26 14 32 syl2anc φ0NX
34 28 24 ltaddrpd φNX<NX+T
35 31 28 30 33 34 lelttrd φ0<NX+T
36 30 35 elrpd φNX+T+
37 15 36 rpdivcld φR2NX+T+
38 10 37 eqeltrid φU+
39 24 38 ifcld φifTUTU+
40 11 adantr φxKyVBEx<ifTUTUXDy<ifTUTUWNrmMod
41 12 adantr φxKyVBEx<ifTUTUXDy<ifTUTUR+
42 13 adantr φxKyVBEx<ifTUTUXDy<ifTUTUBK
43 14 adantr φxKyVBEx<ifTUTUXDy<ifTUTUXV
44 simprll φxKyVBEx<ifTUTUXDy<ifTUTUxK
45 simprlr φxKyVBEx<ifTUTUXDy<ifTUTUyV
46 17 adantr φxKyVBEx<ifTUTUXDy<ifTUTUFNrmGrp
47 ngpms FNrmGrpFMetSp
48 46 47 syl φxKyVBEx<ifTUTUXDy<ifTUTUFMetSp
49 3 5 mscl FMetSpBKxKBEx
50 48 42 44 49 syl3anc φxKyVBEx<ifTUTUXDy<ifTUTUBEx
51 39 adantr φxKyVBEx<ifTUTUXDy<ifTUTUifTUTU+
52 51 rpred φxKyVBEx<ifTUTUXDy<ifTUTUifTUTU
53 38 rpred φU
54 53 adantr φxKyVBEx<ifTUTUXDy<ifTUTUU
55 simprrl φxKyVBEx<ifTUTUXDy<ifTUTUBEx<ifTUTU
56 29 adantr φxKyVBEx<ifTUTUXDy<ifTUTUT
57 min2 TUifTUTUU
58 56 54 57 syl2anc φxKyVBEx<ifTUTUXDy<ifTUTUifTUTUU
59 50 52 54 55 58 ltletrd φxKyVBEx<ifTUTUXDy<ifTUTUBEx<U
60 ngpms WNrmGrpWMetSp
61 26 60 syl φWMetSp
62 61 adantr φxKyVBEx<ifTUTUXDy<ifTUTUWMetSp
63 2 4 mscl WMetSpXVyVXDy
64 62 43 45 63 syl3anc φxKyVBEx<ifTUTUXDy<ifTUTUXDy
65 simprrr φxKyVBEx<ifTUTUXDy<ifTUTUXDy<ifTUTU
66 min1 TUifTUTUT
67 56 54 66 syl2anc φxKyVBEx<ifTUTUXDy<ifTUTUifTUTUT
68 64 52 56 65 67 ltletrd φxKyVBEx<ifTUTUXDy<ifTUTUXDy<T
69 1 2 3 4 5 6 7 8 9 10 40 41 42 43 44 45 59 68 nlmvscnlem2 φxKyVBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<R
70 69 expr φxKyVBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<R
71 70 ralrimivva φxKyVBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<R
72 breq2 r=ifTUTUBEx<rBEx<ifTUTU
73 breq2 r=ifTUTUXDy<rXDy<ifTUTU
74 72 73 anbi12d r=ifTUTUBEx<rXDy<rBEx<ifTUTUXDy<ifTUTU
75 74 imbi1d r=ifTUTUBEx<rXDy<rB·˙XDx·˙y<RBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<R
76 75 2ralbidv r=ifTUTUxKyVBEx<rXDy<rB·˙XDx·˙y<RxKyVBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<R
77 76 rspcev ifTUTU+xKyVBEx<ifTUTUXDy<ifTUTUB·˙XDx·˙y<Rr+xKyVBEx<rXDy<rB·˙XDx·˙y<R
78 39 71 77 syl2anc φr+xKyVBEx<rXDy<rB·˙XDx·˙y<R