Metamath Proof Explorer


Theorem nnawordex

Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnawordex AωBωABxωA+𝑜x=B

Proof

Step Hyp Ref Expression
1 oveq2 y=BA+𝑜y=A+𝑜B
2 1 sseq2d y=BBA+𝑜yBA+𝑜B
3 simplr AωBωABBω
4 nnon BωBOn
5 3 4 syl AωBωABBOn
6 simpll AωBωABAω
7 nnaword2 BωAωBA+𝑜B
8 3 6 7 syl2anc AωBωABBA+𝑜B
9 2 5 8 elrabd AωBωABByOn|BA+𝑜y
10 intss1 ByOn|BA+𝑜yyOn|BA+𝑜yB
11 9 10 syl AωBωAByOn|BA+𝑜yB
12 ssrab2 yOn|BA+𝑜yOn
13 9 ne0d AωBωAByOn|BA+𝑜y
14 oninton yOn|BA+𝑜yOnyOn|BA+𝑜yyOn|BA+𝑜yOn
15 12 13 14 sylancr AωBωAByOn|BA+𝑜yOn
16 eloni yOn|BA+𝑜yOnOrdyOn|BA+𝑜y
17 15 16 syl AωBωABOrdyOn|BA+𝑜y
18 ordom Ordω
19 ordtr2 OrdyOn|BA+𝑜yOrdωyOn|BA+𝑜yBBωyOn|BA+𝑜yω
20 17 18 19 sylancl AωBωAByOn|BA+𝑜yBBωyOn|BA+𝑜yω
21 11 3 20 mp2and AωBωAByOn|BA+𝑜yω
22 nna0 AωA+𝑜=A
23 22 ad2antrr AωBωABA+𝑜=A
24 simpr AωBωABAB
25 23 24 eqsstrd AωBωABA+𝑜B
26 oveq2 yOn|BA+𝑜y=A+𝑜yOn|BA+𝑜y=A+𝑜
27 26 sseq1d yOn|BA+𝑜y=A+𝑜yOn|BA+𝑜yBA+𝑜B
28 25 27 syl5ibrcom AωBωAByOn|BA+𝑜y=A+𝑜yOn|BA+𝑜yB
29 simprr AωBωABxωyOn|BA+𝑜y=sucxyOn|BA+𝑜y=sucx
30 29 oveq2d AωBωABxωyOn|BA+𝑜y=sucxA+𝑜yOn|BA+𝑜y=A+𝑜sucx
31 6 adantr AωBωABxωyOn|BA+𝑜y=sucxAω
32 simprl AωBωABxωyOn|BA+𝑜y=sucxxω
33 nnasuc AωxωA+𝑜sucx=sucA+𝑜x
34 31 32 33 syl2anc AωBωABxωyOn|BA+𝑜y=sucxA+𝑜sucx=sucA+𝑜x
35 30 34 eqtrd AωBωABxωyOn|BA+𝑜y=sucxA+𝑜yOn|BA+𝑜y=sucA+𝑜x
36 nnord BωOrdB
37 3 36 syl AωBωABOrdB
38 37 adantr AωBωABxωyOn|BA+𝑜y=sucxOrdB
39 nnon xωxOn
40 39 adantr xωyOn|BA+𝑜y=sucxxOn
41 vex xV
42 41 sucid xsucx
43 simpr xωyOn|BA+𝑜y=sucxyOn|BA+𝑜y=sucx
44 42 43 eleqtrrid xωyOn|BA+𝑜y=sucxxyOn|BA+𝑜y
45 oveq2 y=xA+𝑜y=A+𝑜x
46 45 sseq2d y=xBA+𝑜yBA+𝑜x
47 46 onnminsb xOnxyOn|BA+𝑜y¬BA+𝑜x
48 40 44 47 sylc xωyOn|BA+𝑜y=sucx¬BA+𝑜x
49 48 adantl AωBωABxωyOn|BA+𝑜y=sucx¬BA+𝑜x
50 nnacl AωxωA+𝑜xω
51 31 32 50 syl2anc AωBωABxωyOn|BA+𝑜y=sucxA+𝑜xω
52 nnord A+𝑜xωOrdA+𝑜x
53 51 52 syl AωBωABxωyOn|BA+𝑜y=sucxOrdA+𝑜x
54 ordtri1 OrdBOrdA+𝑜xBA+𝑜x¬A+𝑜xB
55 38 53 54 syl2anc AωBωABxωyOn|BA+𝑜y=sucxBA+𝑜x¬A+𝑜xB
56 55 con2bid AωBωABxωyOn|BA+𝑜y=sucxA+𝑜xB¬BA+𝑜x
57 49 56 mpbird AωBωABxωyOn|BA+𝑜y=sucxA+𝑜xB
58 ordsucss OrdBA+𝑜xBsucA+𝑜xB
59 38 57 58 sylc AωBωABxωyOn|BA+𝑜y=sucxsucA+𝑜xB
60 35 59 eqsstrd AωBωABxωyOn|BA+𝑜y=sucxA+𝑜yOn|BA+𝑜yB
61 60 rexlimdvaa AωBωABxωyOn|BA+𝑜y=sucxA+𝑜yOn|BA+𝑜yB
62 nn0suc yOn|BA+𝑜yωyOn|BA+𝑜y=xωyOn|BA+𝑜y=sucx
63 21 62 syl AωBωAByOn|BA+𝑜y=xωyOn|BA+𝑜y=sucx
64 28 61 63 mpjaod AωBωABA+𝑜yOn|BA+𝑜yB
65 onint yOn|BA+𝑜yOnyOn|BA+𝑜yyOn|BA+𝑜yyOn|BA+𝑜y
66 12 13 65 sylancr AωBωAByOn|BA+𝑜yyOn|BA+𝑜y
67 nfrab1 _yyOn|BA+𝑜y
68 67 nfint _yyOn|BA+𝑜y
69 nfcv _yOn
70 nfcv _yB
71 nfcv _yA
72 nfcv _y+𝑜
73 71 72 68 nfov _yA+𝑜yOn|BA+𝑜y
74 70 73 nfss yBA+𝑜yOn|BA+𝑜y
75 oveq2 y=yOn|BA+𝑜yA+𝑜y=A+𝑜yOn|BA+𝑜y
76 75 sseq2d y=yOn|BA+𝑜yBA+𝑜yBA+𝑜yOn|BA+𝑜y
77 68 69 74 76 elrabf yOn|BA+𝑜yyOn|BA+𝑜yyOn|BA+𝑜yOnBA+𝑜yOn|BA+𝑜y
78 77 simprbi yOn|BA+𝑜yyOn|BA+𝑜yBA+𝑜yOn|BA+𝑜y
79 66 78 syl AωBωABBA+𝑜yOn|BA+𝑜y
80 64 79 eqssd AωBωABA+𝑜yOn|BA+𝑜y=B
81 oveq2 x=yOn|BA+𝑜yA+𝑜x=A+𝑜yOn|BA+𝑜y
82 81 eqeq1d x=yOn|BA+𝑜yA+𝑜x=BA+𝑜yOn|BA+𝑜y=B
83 82 rspcev yOn|BA+𝑜yωA+𝑜yOn|BA+𝑜y=BxωA+𝑜x=B
84 21 80 83 syl2anc AωBωABxωA+𝑜x=B
85 84 ex AωBωABxωA+𝑜x=B
86 nnaword1 AωxωAA+𝑜x
87 86 adantlr AωBωxωAA+𝑜x
88 sseq2 A+𝑜x=BAA+𝑜xAB
89 87 88 syl5ibcom AωBωxωA+𝑜x=BAB
90 89 rexlimdva AωBωxωA+𝑜x=BAB
91 85 90 impbid AωBωABxωA+𝑜x=B