Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | nnoeomeqom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | nnon | |
|
3 | 1 2 | syl | |
4 | omelon | |
|
5 | limom | |
|
6 | 4 5 | pm3.2i | |
7 | 6 | a1i | |
8 | 0elon | |
|
9 | 8 | a1i | |
10 | 0ss | |
|
11 | 10 | a1i | |
12 | simpr | |
|
13 | ontr2 | |
|
14 | 13 | imp | |
15 | 9 3 11 12 14 | syl22anc | |
16 | oelim | |
|
17 | 3 7 15 16 | syl21anc | |
18 | ovex | |
|
19 | 18 | dfiun2 | |
20 | eluniab | |
|
21 | 19.42v | |
|
22 | 3anass | |
|
23 | 22 | exbii | |
24 | df-rex | |
|
25 | 24 | anbi2i | |
26 | 21 23 25 | 3bitr4ri | |
27 | 26 | exbii | |
28 | excom | |
|
29 | 20 27 28 | 3bitri | |
30 | simpr3 | |
|
31 | simp2 | |
|
32 | nnecl | |
|
33 | 1 31 32 | syl2an | |
34 | onelss | |
|
35 | 4 33 34 | mpsyl | |
36 | 30 35 | eqsstrd | |
37 | simpr1 | |
|
38 | 36 37 | sseldd | |
39 | 38 | ex | |
40 | 39 | exlimdvv | |
41 | peano2 | |
|
42 | 41 | adantl | |
43 | ovex | |
|
44 | 43 | a1i | |
45 | 2 | anim1i | |
46 | ondif2 | |
|
47 | 45 46 | sylibr | |
48 | nnon | |
|
49 | 41 48 | syl | |
50 | oeworde | |
|
51 | 47 49 50 | syl2an | |
52 | vex | |
|
53 | 52 | sucid | |
54 | 53 | a1i | |
55 | 51 54 | sseldd | |
56 | eqidd | |
|
57 | 55 42 56 | 3jca | |
58 | eleq2 | |
|
59 | eqeq1 | |
|
60 | 58 59 | 3anbi13d | |
61 | 44 57 60 | spcedv | |
62 | eleq1 | |
|
63 | oveq2 | |
|
64 | 63 | eqeq2d | |
65 | 62 64 | 3anbi23d | |
66 | 65 | exbidv | |
67 | 42 61 66 | spcedv | |
68 | 67 | ex | |
69 | 40 68 | impbid | |
70 | 29 69 | bitrid | |
71 | 70 | eqrdv | |
72 | 19 71 | eqtrid | |
73 | 17 72 | eqtrd | |