Metamath Proof Explorer


Theorem nnoeomeqom

Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion nnoeomeqom Aω1𝑜AA𝑜ω=ω

Proof

Step Hyp Ref Expression
1 simpl Aω1𝑜AAω
2 nnon AωAOn
3 1 2 syl Aω1𝑜AAOn
4 omelon ωOn
5 limom Limω
6 4 5 pm3.2i ωOnLimω
7 6 a1i Aω1𝑜AωOnLimω
8 0elon On
9 8 a1i Aω1𝑜AOn
10 0ss 1𝑜
11 10 a1i Aω1𝑜A1𝑜
12 simpr Aω1𝑜A1𝑜A
13 ontr2 OnAOn1𝑜1𝑜AA
14 13 imp OnAOn1𝑜1𝑜AA
15 9 3 11 12 14 syl22anc Aω1𝑜AA
16 oelim AOnωOnLimωAA𝑜ω=xωA𝑜x
17 3 7 15 16 syl21anc Aω1𝑜AA𝑜ω=xωA𝑜x
18 ovex A𝑜xV
19 18 dfiun2 xωA𝑜x=y|xωy=A𝑜x
20 eluniab zy|xωy=A𝑜xyzyxωy=A𝑜x
21 19.42v xzyxωy=A𝑜xzyxxωy=A𝑜x
22 3anass zyxωy=A𝑜xzyxωy=A𝑜x
23 22 exbii xzyxωy=A𝑜xxzyxωy=A𝑜x
24 df-rex xωy=A𝑜xxxωy=A𝑜x
25 24 anbi2i zyxωy=A𝑜xzyxxωy=A𝑜x
26 21 23 25 3bitr4ri zyxωy=A𝑜xxzyxωy=A𝑜x
27 26 exbii yzyxωy=A𝑜xyxzyxωy=A𝑜x
28 excom yxzyxωy=A𝑜xxyzyxωy=A𝑜x
29 20 27 28 3bitri zy|xωy=A𝑜xxyzyxωy=A𝑜x
30 simpr3 Aω1𝑜Azyxωy=A𝑜xy=A𝑜x
31 simp2 zyxωy=A𝑜xxω
32 nnecl AωxωA𝑜xω
33 1 31 32 syl2an Aω1𝑜Azyxωy=A𝑜xA𝑜xω
34 onelss ωOnA𝑜xωA𝑜xω
35 4 33 34 mpsyl Aω1𝑜Azyxωy=A𝑜xA𝑜xω
36 30 35 eqsstrd Aω1𝑜Azyxωy=A𝑜xyω
37 simpr1 Aω1𝑜Azyxωy=A𝑜xzy
38 36 37 sseldd Aω1𝑜Azyxωy=A𝑜xzω
39 38 ex Aω1𝑜Azyxωy=A𝑜xzω
40 39 exlimdvv Aω1𝑜Axyzyxωy=A𝑜xzω
41 peano2 zωsuczω
42 41 adantl Aω1𝑜Azωsuczω
43 ovex A𝑜suczV
44 43 a1i Aω1𝑜AzωA𝑜suczV
45 2 anim1i Aω1𝑜AAOn1𝑜A
46 ondif2 AOn2𝑜AOn1𝑜A
47 45 46 sylibr Aω1𝑜AAOn2𝑜
48 nnon suczωsuczOn
49 41 48 syl zωsuczOn
50 oeworde AOn2𝑜suczOnsuczA𝑜sucz
51 47 49 50 syl2an Aω1𝑜AzωsuczA𝑜sucz
52 vex zV
53 52 sucid zsucz
54 53 a1i Aω1𝑜Azωzsucz
55 51 54 sseldd Aω1𝑜AzωzA𝑜sucz
56 eqidd Aω1𝑜AzωA𝑜sucz=A𝑜sucz
57 55 42 56 3jca Aω1𝑜AzωzA𝑜suczsuczωA𝑜sucz=A𝑜sucz
58 eleq2 y=A𝑜suczzyzA𝑜sucz
59 eqeq1 y=A𝑜suczy=A𝑜suczA𝑜sucz=A𝑜sucz
60 58 59 3anbi13d y=A𝑜suczzysuczωy=A𝑜suczzA𝑜suczsuczωA𝑜sucz=A𝑜sucz
61 44 57 60 spcedv Aω1𝑜Azωyzysuczωy=A𝑜sucz
62 eleq1 x=suczxωsuczω
63 oveq2 x=suczA𝑜x=A𝑜sucz
64 63 eqeq2d x=suczy=A𝑜xy=A𝑜sucz
65 62 64 3anbi23d x=suczzyxωy=A𝑜xzysuczωy=A𝑜sucz
66 65 exbidv x=suczyzyxωy=A𝑜xyzysuczωy=A𝑜sucz
67 42 61 66 spcedv Aω1𝑜Azωxyzyxωy=A𝑜x
68 67 ex Aω1𝑜Azωxyzyxωy=A𝑜x
69 40 68 impbid Aω1𝑜Axyzyxωy=A𝑜xzω
70 29 69 bitrid Aω1𝑜Azy|xωy=A𝑜xzω
71 70 eqrdv Aω1𝑜Ay|xωy=A𝑜x=ω
72 19 71 eqtrid Aω1𝑜AxωA𝑜x=ω
73 17 72 eqtrd Aω1𝑜AA𝑜ω=ω