| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
nnon |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
omelon |
|
| 5 |
|
limom |
|
| 6 |
4 5
|
pm3.2i |
|
| 7 |
6
|
a1i |
|
| 8 |
|
0elon |
|
| 9 |
8
|
a1i |
|
| 10 |
|
0ss |
|
| 11 |
10
|
a1i |
|
| 12 |
|
simpr |
|
| 13 |
|
ontr2 |
|
| 14 |
13
|
imp |
|
| 15 |
9 3 11 12 14
|
syl22anc |
|
| 16 |
|
oelim |
|
| 17 |
3 7 15 16
|
syl21anc |
|
| 18 |
|
ovex |
|
| 19 |
18
|
dfiun2 |
|
| 20 |
|
eluniab |
|
| 21 |
|
19.42v |
|
| 22 |
|
3anass |
|
| 23 |
22
|
exbii |
|
| 24 |
|
df-rex |
|
| 25 |
24
|
anbi2i |
|
| 26 |
21 23 25
|
3bitr4ri |
|
| 27 |
26
|
exbii |
|
| 28 |
|
excom |
|
| 29 |
20 27 28
|
3bitri |
|
| 30 |
|
simpr3 |
|
| 31 |
|
simp2 |
|
| 32 |
|
nnecl |
|
| 33 |
1 31 32
|
syl2an |
|
| 34 |
|
onelss |
|
| 35 |
4 33 34
|
mpsyl |
|
| 36 |
30 35
|
eqsstrd |
|
| 37 |
|
simpr1 |
|
| 38 |
36 37
|
sseldd |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
exlimdvv |
|
| 41 |
|
peano2 |
|
| 42 |
41
|
adantl |
|
| 43 |
|
ovex |
|
| 44 |
43
|
a1i |
|
| 45 |
2
|
anim1i |
|
| 46 |
|
ondif2 |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
|
nnon |
|
| 49 |
41 48
|
syl |
|
| 50 |
|
oeworde |
|
| 51 |
47 49 50
|
syl2an |
|
| 52 |
|
vex |
|
| 53 |
52
|
sucid |
|
| 54 |
53
|
a1i |
|
| 55 |
51 54
|
sseldd |
|
| 56 |
|
eqidd |
|
| 57 |
55 42 56
|
3jca |
|
| 58 |
|
eleq2 |
|
| 59 |
|
eqeq1 |
|
| 60 |
58 59
|
3anbi13d |
|
| 61 |
44 57 60
|
spcedv |
|
| 62 |
|
eleq1 |
|
| 63 |
|
oveq2 |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
62 64
|
3anbi23d |
|
| 66 |
65
|
exbidv |
|
| 67 |
42 61 66
|
spcedv |
|
| 68 |
67
|
ex |
|
| 69 |
40 68
|
impbid |
|
| 70 |
29 69
|
bitrid |
|
| 71 |
70
|
eqrdv |
|
| 72 |
19 71
|
eqtrid |
|
| 73 |
17 72
|
eqtrd |
|