Metamath Proof Explorer


Theorem nnsum3primesle9

Description: Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020)

Ref Expression
Assertion nnsum3primesle9 N2N8df1dd3N=k=1dfk

Proof

Step Hyp Ref Expression
1 eluzelre N2N
2 8re 8
3 2 a1i N28
4 1 3 leloed N2N8N<8N=8
5 eluzelz N2N
6 7nn 7
7 6 nnzi 7
8 zleltp1 N7N7N<7+1
9 5 7 8 sylancl N2N7N<7+1
10 7re 7
11 10 a1i N27
12 1 11 leloed N2N7N<7N=7
13 7p1e8 7+1=8
14 13 breq2i N<7+1N<8
15 14 a1i N2N<7+1N<8
16 9 12 15 3bitr3rd N2N<8N<7N=7
17 6nn 6
18 17 nnzi 6
19 zleltp1 N6N6N<6+1
20 5 18 19 sylancl N2N6N<6+1
21 6re 6
22 21 a1i N26
23 1 22 leloed N2N6N<6N=6
24 6p1e7 6+1=7
25 24 breq2i N<6+1N<7
26 25 a1i N2N<6+1N<7
27 20 23 26 3bitr3rd N2N<7N<6N=6
28 5nn 5
29 28 nnzi 5
30 zleltp1 N5N5N<5+1
31 5 29 30 sylancl N2N5N<5+1
32 5re 5
33 32 a1i N25
34 1 33 leloed N2N5N<5N=5
35 5p1e6 5+1=6
36 35 breq2i N<5+1N<6
37 36 a1i N2N<5+1N<6
38 31 34 37 3bitr3rd N2N<6N<5N=5
39 4z 4
40 zleltp1 N4N4N<4+1
41 5 39 40 sylancl N2N4N<4+1
42 4re 4
43 42 a1i N24
44 1 43 leloed N2N4N<4N=4
45 4p1e5 4+1=5
46 45 breq2i N<4+1N<5
47 46 a1i N2N<4+1N<5
48 41 44 47 3bitr3rd N2N<5N<4N=4
49 3z 3
50 zleltp1 N3N3N<3+1
51 5 49 50 sylancl N2N3N<3+1
52 3re 3
53 52 a1i N23
54 1 53 leloed N2N3N<3N=3
55 3p1e4 3+1=4
56 55 breq2i N<3+1N<4
57 56 a1i N2N<3+1N<4
58 51 54 57 3bitr3rd N2N<4N<3N=3
59 eluz2 N22N2N
60 2re 2
61 60 a1i N2
62 zre NN
63 61 62 leloed N2N2<N2=N
64 3m1e2 31=2
65 64 eqcomi 2=31
66 65 breq1i 2<N31<N
67 zlem1lt 3N3N31<N
68 49 67 mpan N3N31<N
69 68 biimprd N31<N3N
70 66 69 biimtrid N2<N3N
71 52 a1i N3
72 71 62 lenltd N3N¬N<3
73 pm2.21 ¬N<3N<3N=2
74 72 73 syl6bi N3NN<3N=2
75 70 74 syldc 2<NNN<3N=2
76 eqcom 2=NN=2
77 76 biimpi 2=NN=2
78 77 2a1d 2=NNN<3N=2
79 75 78 jaoi 2<N2=NNN<3N=2
80 79 com12 N2<N2=NN<3N=2
81 63 80 sylbid N2NN<3N=2
82 81 imp N2NN<3N=2
83 2lt3 2<3
84 breq1 N=2N<32<3
85 83 84 mpbiri N=2N<3
86 82 85 impbid1 N2NN<3N=2
87 86 3adant1 2N2NN<3N=2
88 59 87 sylbi N2N<3N=2
89 88 orbi1d N2N<3N=3N=2N=3
90 58 89 bitrd N2N<4N=2N=3
91 90 orbi1d N2N<4N=4N=2N=3N=4
92 48 91 bitrd N2N<5N=2N=3N=4
93 92 orbi1d N2N<5N=5N=2N=3N=4N=5
94 38 93 bitrd N2N<6N=2N=3N=4N=5
95 94 orbi1d N2N<6N=6N=2N=3N=4N=5N=6
96 27 95 bitrd N2N<7N=2N=3N=4N=5N=6
97 96 orbi1d N2N<7N=7N=2N=3N=4N=5N=6N=7
98 16 97 bitrd N2N<8N=2N=3N=4N=5N=6N=7
99 98 orbi1d N2N<8N=8N=2N=3N=4N=5N=6N=7N=8
100 99 biimpd N2N<8N=8N=2N=3N=4N=5N=6N=7N=8
101 4 100 sylbid N2N8N=2N=3N=4N=5N=6N=7N=8
102 101 imp N2N8N=2N=3N=4N=5N=6N=7N=8
103 2prm 2
104 eleq1 N=2N2
105 103 104 mpbiri N=2N
106 nnsum3primesprm Ndf1dd3N=k=1dfk
107 105 106 syl N=2df1dd3N=k=1dfk
108 3prm 3
109 eleq1 N=3N3
110 108 109 mpbiri N=3N
111 110 106 syl N=3df1dd3N=k=1dfk
112 107 111 jaoi N=2N=3df1dd3N=k=1dfk
113 nnsum3primes4 df1dd34=k=1dfk
114 eqeq1 N=4N=k=1dfk4=k=1dfk
115 114 anbi2d N=4d3N=k=1dfkd34=k=1dfk
116 115 2rexbidv N=4df1dd3N=k=1dfkdf1dd34=k=1dfk
117 113 116 mpbiri N=4df1dd3N=k=1dfk
118 112 117 jaoi N=2N=3N=4df1dd3N=k=1dfk
119 5prm 5
120 eleq1 N=5N5
121 119 120 mpbiri N=5N
122 121 106 syl N=5df1dd3N=k=1dfk
123 118 122 jaoi N=2N=3N=4N=5df1dd3N=k=1dfk
124 6gbe 6GoldbachEven
125 eleq1 N=6NGoldbachEven6GoldbachEven
126 124 125 mpbiri N=6NGoldbachEven
127 nnsum3primesgbe NGoldbachEvendf1dd3N=k=1dfk
128 126 127 syl N=6df1dd3N=k=1dfk
129 123 128 jaoi N=2N=3N=4N=5N=6df1dd3N=k=1dfk
130 7prm 7
131 eleq1 N=7N7
132 130 131 mpbiri N=7N
133 132 106 syl N=7df1dd3N=k=1dfk
134 129 133 jaoi N=2N=3N=4N=5N=6N=7df1dd3N=k=1dfk
135 8gbe 8GoldbachEven
136 eleq1 N=8NGoldbachEven8GoldbachEven
137 135 136 mpbiri N=8NGoldbachEven
138 137 127 syl N=8df1dd3N=k=1dfk
139 134 138 jaoi N=2N=3N=4N=5N=6N=7N=8df1dd3N=k=1dfk
140 102 139 syl N2N8df1dd3N=k=1dfk