Metamath Proof Explorer


Theorem noextenddif

Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Hypothesis noextend.1 X1𝑜2𝑜
Assertion noextenddif ANoxOn|AxAdomAXx=domA

Proof

Step Hyp Ref Expression
1 noextend.1 X1𝑜2𝑜
2 nodmon ANodomAOn
3 1 nosgnn0i X
4 3 a1i ANoX
5 nodmord ANoOrddomA
6 ordirr OrddomA¬domAdomA
7 5 6 syl ANo¬domAdomA
8 ndmfv ¬domAdomAAdomA=
9 7 8 syl ANoAdomA=
10 nofun ANoFunA
11 funfn FunAAFndomA
12 10 11 sylib ANoAFndomA
13 fnsng domAOnX1𝑜2𝑜domAXFndomA
14 2 1 13 sylancl ANodomAXFndomA
15 disjsn domAdomA=¬domAdomA
16 7 15 sylibr ANodomAdomA=
17 snidg domAOndomAdomA
18 2 17 syl ANodomAdomA
19 fvun2 AFndomAdomAXFndomAdomAdomA=domAdomAAdomAXdomA=domAXdomA
20 12 14 16 18 19 syl112anc ANoAdomAXdomA=domAXdomA
21 fvsng domAOnX1𝑜2𝑜domAXdomA=X
22 2 1 21 sylancl ANodomAXdomA=X
23 20 22 eqtrd ANoAdomAXdomA=X
24 4 9 23 3netr4d ANoAdomAAdomAXdomA
25 fveq2 x=domAAx=AdomA
26 fveq2 x=domAAdomAXx=AdomAXdomA
27 25 26 neeq12d x=domAAxAdomAXxAdomAAdomAXdomA
28 27 onintss domAOnAdomAAdomAXdomAxOn|AxAdomAXxdomA
29 2 24 28 sylc ANoxOn|AxAdomAXxdomA
30 eloni yOnOrdy
31 ordtri2 OrdyOrddomAydomA¬y=domAdomAy
32 eqcom y=domAdomA=y
33 32 orbi1i y=domAdomAydomA=ydomAy
34 orcom domA=ydomAydomAydomA=y
35 33 34 bitri y=domAdomAydomAydomA=y
36 35 notbii ¬y=domAdomAy¬domAydomA=y
37 31 36 bitrdi OrdyOrddomAydomA¬domAydomA=y
38 ordsseleq OrddomAOrdydomAydomAydomA=y
39 38 notbid OrddomAOrdy¬domAy¬domAydomA=y
40 39 ancoms OrdyOrddomA¬domAy¬domAydomA=y
41 37 40 bitr4d OrdyOrddomAydomA¬domAy
42 30 5 41 syl2anr ANoyOnydomA¬domAy
43 12 3ad2ant1 ANoyOnydomAAFndomA
44 14 3ad2ant1 ANoyOnydomAdomAXFndomA
45 16 3ad2ant1 ANoyOnydomAdomAdomA=
46 simp3 ANoyOnydomAydomA
47 fvun1 AFndomAdomAXFndomAdomAdomA=ydomAAdomAXy=Ay
48 43 44 45 46 47 syl112anc ANoyOnydomAAdomAXy=Ay
49 48 eqcomd ANoyOnydomAAy=AdomAXy
50 49 3expia ANoyOnydomAAy=AdomAXy
51 42 50 sylbird ANoyOn¬domAyAy=AdomAXy
52 51 necon1ad ANoyOnAyAdomAXydomAy
53 52 ralrimiva ANoyOnAyAdomAXydomAy
54 fveq2 x=yAx=Ay
55 fveq2 x=yAdomAXx=AdomAXy
56 54 55 neeq12d x=yAxAdomAXxAyAdomAXy
57 56 ralrab yxOn|AxAdomAXxdomAyyOnAyAdomAXydomAy
58 53 57 sylibr ANoyxOn|AxAdomAXxdomAy
59 ssint domAxOn|AxAdomAXxyxOn|AxAdomAXxdomAy
60 58 59 sylibr ANodomAxOn|AxAdomAXx
61 29 60 eqssd ANoxOn|AxAdomAXx=domA