Description: For a prime divisor P of K - 1 , the total number of closed walks of length P in a K-regular friendship graph is equal modulo P to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 3-Jun-2021) (Proof shortened by AV, 7-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | numclwwlk6.v | |
|
Assertion | numclwwlk6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk6.v | |
|
2 | 1 | finrusgrfusgr | |
3 | 2 | 3adant2 | |
4 | prmnn | |
|
5 | 4 | adantr | |
6 | 1 | numclwwlk4 | |
7 | 3 5 6 | syl2an | |
8 | 7 | oveq1d | |
9 | 5 | adantl | |
10 | simp3 | |
|
11 | 10 | adantr | |
12 | 11 | adantr | |
13 | 1 | clwwlknonfin | |
14 | hashcl | |
|
15 | 12 13 14 | 3syl | |
16 | 15 | nn0zd | |
17 | 16 | ralrimiva | |
18 | 9 11 17 | modfsummod | |
19 | simpl | |
|
20 | simpr | |
|
21 | 20 | anim1ci | |
22 | 3anass | |
|
23 | 21 22 | sylibr | |
24 | 1 | numclwwlk5 | |
25 | 19 23 24 | syl2an2r | |
26 | 25 | sumeq2dv | |
27 | 26 | oveq1d | |
28 | 18 27 | eqtrd | |
29 | 1cnd | |
|
30 | fsumconst | |
|
31 | 10 29 30 | syl2an | |
32 | hashcl | |
|
33 | 32 | nn0red | |
34 | ax-1rid | |
|
35 | 33 34 | syl | |
36 | 35 | 3ad2ant3 | |
37 | 36 | adantr | |
38 | 31 37 | eqtrd | |
39 | 38 | oveq1d | |
40 | 8 28 39 | 3eqtrd | |