Metamath Proof Explorer


Theorem numclwwlk6

Description: For a prime divisor P of K - 1 , the total number of closed walks of length P in a K-regular friendship graph is equal modulo P to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 3-Jun-2021) (Proof shortened by AV, 7-Mar-2022)

Ref Expression
Hypothesis numclwwlk6.v V=VtxG
Assertion numclwwlk6 GRegUSGraphKGFriendGraphVFinPPK1PClWWalksNGmodP=VmodP

Proof

Step Hyp Ref Expression
1 numclwwlk6.v V=VtxG
2 1 finrusgrfusgr GRegUSGraphKVFinGFinUSGraph
3 2 3adant2 GRegUSGraphKGFriendGraphVFinGFinUSGraph
4 prmnn PP
5 4 adantr PPK1P
6 1 numclwwlk4 GFinUSGraphPPClWWalksNG=xVxClWWalksNOnGP
7 3 5 6 syl2an GRegUSGraphKGFriendGraphVFinPPK1PClWWalksNG=xVxClWWalksNOnGP
8 7 oveq1d GRegUSGraphKGFriendGraphVFinPPK1PClWWalksNGmodP=xVxClWWalksNOnGPmodP
9 5 adantl GRegUSGraphKGFriendGraphVFinPPK1P
10 simp3 GRegUSGraphKGFriendGraphVFinVFin
11 10 adantr GRegUSGraphKGFriendGraphVFinPPK1VFin
12 11 adantr GRegUSGraphKGFriendGraphVFinPPK1xVVFin
13 1 clwwlknonfin VFinxClWWalksNOnGPFin
14 hashcl xClWWalksNOnGPFinxClWWalksNOnGP0
15 12 13 14 3syl GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGP0
16 15 nn0zd GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGP
17 16 ralrimiva GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGP
18 9 11 17 modfsummod GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGPmodP=xVxClWWalksNOnGPmodPmodP
19 simpl GRegUSGraphKGFriendGraphVFinPPK1GRegUSGraphKGFriendGraphVFin
20 simpr GRegUSGraphKGFriendGraphVFinPPK1PPK1
21 20 anim1ci GRegUSGraphKGFriendGraphVFinPPK1xVxVPPK1
22 3anass xVPPK1xVPPK1
23 21 22 sylibr GRegUSGraphKGFriendGraphVFinPPK1xVxVPPK1
24 1 numclwwlk5 GRegUSGraphKGFriendGraphVFinxVPPK1xClWWalksNOnGPmodP=1
25 19 23 24 syl2an2r GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGPmodP=1
26 25 sumeq2dv GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGPmodP=xV1
27 26 oveq1d GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGPmodPmodP=xV1modP
28 18 27 eqtrd GRegUSGraphKGFriendGraphVFinPPK1xVxClWWalksNOnGPmodP=xV1modP
29 1cnd PPK11
30 fsumconst VFin1xV1=V1
31 10 29 30 syl2an GRegUSGraphKGFriendGraphVFinPPK1xV1=V1
32 hashcl VFinV0
33 32 nn0red VFinV
34 ax-1rid VV1=V
35 33 34 syl VFinV1=V
36 35 3ad2ant3 GRegUSGraphKGFriendGraphVFinV1=V
37 36 adantr GRegUSGraphKGFriendGraphVFinPPK1V1=V
38 31 37 eqtrd GRegUSGraphKGFriendGraphVFinPPK1xV1=V
39 38 oveq1d GRegUSGraphKGFriendGraphVFinPPK1xV1modP=VmodP
40 8 28 39 3eqtrd GRegUSGraphKGFriendGraphVFinPPK1PClWWalksNGmodP=VmodP