Metamath Proof Explorer


Theorem o1cxp

Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses o1cxp.1 φC
o1cxp.2 φ0C
o1cxp.3 φxABV
o1cxp.4 φxAB𝑂1
Assertion o1cxp φxABC𝑂1

Proof

Step Hyp Ref Expression
1 o1cxp.1 φC
2 o1cxp.2 φ0C
3 o1cxp.3 φxABV
4 o1cxp.4 φxAB𝑂1
5 o1f xAB𝑂1xAB:domxAB
6 4 5 syl φxAB:domxAB
7 3 ralrimiva φxABV
8 dmmptg xABVdomxAB=A
9 7 8 syl φdomxAB=A
10 9 feq2d φxAB:domxABxAB:A
11 6 10 mpbid φxAB:A
12 o1bdd xAB𝑂1xAB:AymzAyzxABzm
13 4 11 12 syl2anc φymzAyzxABzm
14 simpr φxAxA
15 eqid xAB=xAB
16 15 fvmpt2 xABVxABx=B
17 14 3 16 syl2anc φxAxABx=B
18 17 oveq1d φxAxABxC=BC
19 ovex BCV
20 eqid xABC=xABC
21 20 fvmpt2 xABCVxABCx=BC
22 14 19 21 sylancl φxAxABCx=BC
23 18 22 eqtr4d φxAxABxC=xABCx
24 23 ralrimiva φxAxABxC=xABCx
25 nfv zxABxC=xABCx
26 nffvmpt1 _xxABz
27 nfcv _xc
28 nfcv _xC
29 26 27 28 nfov _xxABzC
30 nffvmpt1 _xxABCz
31 29 30 nfeq xxABzC=xABCz
32 fveq2 x=zxABx=xABz
33 32 oveq1d x=zxABxC=xABzC
34 fveq2 x=zxABCx=xABCz
35 33 34 eqeq12d x=zxABxC=xABCxxABzC=xABCz
36 25 31 35 cbvralw xAxABxC=xABCxzAxABzC=xABCz
37 24 36 sylib φzAxABzC=xABCz
38 37 r19.21bi φzAxABzC=xABCz
39 38 ad2ant2r φymzAxABzmxABzC=xABCz
40 39 fveq2d φymzAxABzmxABzC=xABCz
41 11 ffvelcdmda φzAxABz
42 41 ad2ant2r φymzAxABzmxABz
43 1 ad2antrr φymzAxABzmC
44 2 ad2antrr φymzAxABzm0C
45 simprr φymm
46 0re 0
47 ifcl m0if0mm0
48 45 46 47 sylancl φymif0mm0
49 48 adantr φymzAxABzmif0mm0
50 42 abscld φymzAxABzmxABz
51 45 adantr φymzAxABzmm
52 simprr φymzAxABzmxABzm
53 max2 0mmif0mm0
54 46 45 53 sylancr φymmif0mm0
55 54 adantr φymzAxABzmmif0mm0
56 50 51 49 52 55 letrd φymzAxABzmxABzif0mm0
57 42 43 44 49 56 abscxpbnd φymzAxABzmxABzCif0mm0CeCπ
58 40 57 eqbrtrrd φymzAxABzmxABCzif0mm0CeCπ
59 58 expr φymzAxABzmxABCzif0mm0CeCπ
60 59 imim2d φymzAyzxABzmyzxABCzif0mm0CeCπ
61 60 ralimdva φymzAyzxABzmzAyzxABCzif0mm0CeCπ
62 3 4 o1mptrcl φxAB
63 1 adantr φxAC
64 62 63 cxpcld φxABC
65 64 fmpttd φxABC:A
66 65 adantr φymxABC:A
67 o1dm xAB𝑂1domxAB
68 4 67 syl φdomxAB
69 9 68 eqsstrrd φA
70 69 adantr φymA
71 simprl φymy
72 max1 0m0if0mm0
73 46 45 72 sylancr φym0if0mm0
74 1 adantr φymC
75 74 recld φymC
76 48 73 75 recxpcld φymif0mm0C
77 74 abscld φymC
78 pire π
79 remulcl CπCπ
80 77 78 79 sylancl φymCπ
81 80 reefcld φymeCπ
82 76 81 remulcld φymif0mm0CeCπ
83 elo12r xABC:AAyif0mm0CeCπzAyzxABCzif0mm0CeCπxABC𝑂1
84 83 3expia xABC:AAyif0mm0CeCπzAyzxABCzif0mm0CeCπxABC𝑂1
85 66 70 71 82 84 syl22anc φymzAyzxABCzif0mm0CeCπxABC𝑂1
86 61 85 syld φymzAyzxABzmxABC𝑂1
87 86 rexlimdvva φymzAyzxABzmxABC𝑂1
88 13 87 mpd φxABC𝑂1