Step |
Hyp |
Ref |
Expression |
1 |
|
o1cxp.1 |
|
2 |
|
o1cxp.2 |
|
3 |
|
o1cxp.3 |
|
4 |
|
o1cxp.4 |
|
5 |
|
o1f |
|
6 |
4 5
|
syl |
|
7 |
3
|
ralrimiva |
|
8 |
|
dmmptg |
|
9 |
7 8
|
syl |
|
10 |
9
|
feq2d |
|
11 |
6 10
|
mpbid |
|
12 |
|
o1bdd |
|
13 |
4 11 12
|
syl2anc |
|
14 |
|
simpr |
|
15 |
|
eqid |
|
16 |
15
|
fvmpt2 |
|
17 |
14 3 16
|
syl2anc |
|
18 |
17
|
oveq1d |
|
19 |
|
ovex |
|
20 |
|
eqid |
|
21 |
20
|
fvmpt2 |
|
22 |
14 19 21
|
sylancl |
|
23 |
18 22
|
eqtr4d |
|
24 |
23
|
ralrimiva |
|
25 |
|
nfv |
|
26 |
|
nffvmpt1 |
|
27 |
|
nfcv |
|
28 |
|
nfcv |
|
29 |
26 27 28
|
nfov |
|
30 |
|
nffvmpt1 |
|
31 |
29 30
|
nfeq |
|
32 |
|
fveq2 |
|
33 |
32
|
oveq1d |
|
34 |
|
fveq2 |
|
35 |
33 34
|
eqeq12d |
|
36 |
25 31 35
|
cbvralw |
|
37 |
24 36
|
sylib |
|
38 |
37
|
r19.21bi |
|
39 |
38
|
ad2ant2r |
|
40 |
39
|
fveq2d |
|
41 |
11
|
ffvelrnda |
|
42 |
41
|
ad2ant2r |
|
43 |
1
|
ad2antrr |
|
44 |
2
|
ad2antrr |
|
45 |
|
simprr |
|
46 |
|
0re |
|
47 |
|
ifcl |
|
48 |
45 46 47
|
sylancl |
|
49 |
48
|
adantr |
|
50 |
42
|
abscld |
|
51 |
45
|
adantr |
|
52 |
|
simprr |
|
53 |
|
max2 |
|
54 |
46 45 53
|
sylancr |
|
55 |
54
|
adantr |
|
56 |
50 51 49 52 55
|
letrd |
|
57 |
42 43 44 49 56
|
abscxpbnd |
|
58 |
40 57
|
eqbrtrrd |
|
59 |
58
|
expr |
|
60 |
59
|
imim2d |
|
61 |
60
|
ralimdva |
|
62 |
3 4
|
o1mptrcl |
|
63 |
1
|
adantr |
|
64 |
62 63
|
cxpcld |
|
65 |
64
|
fmpttd |
|
66 |
65
|
adantr |
|
67 |
|
o1dm |
|
68 |
4 67
|
syl |
|
69 |
9 68
|
eqsstrrd |
|
70 |
69
|
adantr |
|
71 |
|
simprl |
|
72 |
|
max1 |
|
73 |
46 45 72
|
sylancr |
|
74 |
1
|
adantr |
|
75 |
74
|
recld |
|
76 |
48 73 75
|
recxpcld |
|
77 |
74
|
abscld |
|
78 |
|
pire |
|
79 |
|
remulcl |
|
80 |
77 78 79
|
sylancl |
|
81 |
80
|
reefcld |
|
82 |
76 81
|
remulcld |
|
83 |
|
elo12r |
|
84 |
83
|
3expia |
|
85 |
66 70 71 82 84
|
syl22anc |
|
86 |
61 85
|
syld |
|
87 |
86
|
rexlimdvva |
|
88 |
13 87
|
mpd |
|